Let us prove the first item for \(\alpha \geq 0\text{.}\) Let \(P\) be a partition of \([a,b]\text{,}\) and \(m_i \coloneqq \inf \bigl\{ f(x) : x \in [x_{i-1},x_i] \bigr\}\) as usual. As \(\alpha \geq 0\text{,}\) the multiplication by \(\alpha\) moves past the infimum,
\begin{equation*}
\inf \bigl\{ \alpha f(x) : x \in [x_{i-1},x_i] \bigr\}
=
\alpha \inf \bigl\{ f(x) : x \in [x_{i-1},x_i] \bigr\} = \alpha m_i .
\end{equation*}
Therefore,
\begin{equation*}
L(P,\alpha f) =
\sum_{i=1}^n \alpha m_i \Delta x_i = \alpha \sum_{i=1}^n m_i \Delta x_i = \alpha
L(P,f).
\end{equation*}
Similarly,
\begin{equation*}
U(P,\alpha f) = \alpha U(P,f) .
\end{equation*}
Again, as \(\alpha \geq 0\text{,}\) we may move multiplication by \(\alpha\) past the supremum. Hence,
\begin{equation*}
\begin{split}
\underline{\int_a^b} \alpha f(x)\,dx & =
\sup \, \bigl\{ L(P,\alpha f) : P \text{ a partition of } [a,b] \bigr\}
\\
& =
\sup \, \bigl\{ \alpha L(P,f) : P \text{ a partition of } [a,b] \bigr\}
\\
& =
\alpha \,
\sup \, \bigl\{ L(P,f) : P \text{ a partition of } [a,b] \bigr\}
\\
& =
\alpha
\underline{\int_a^b} f(x)\,dx .
\end{split}
\end{equation*}
Similarly, we show
\begin{equation*}
\overline{\int_a^b} \alpha f(x)\,dx
=
\alpha
\overline{\int_a^b} f(x)\,dx .
\end{equation*}
The conclusion now follows for \(\alpha \geq 0\text{.}\)