Limits interact nicely with algebraic operations.
Proof.
We start with
i. Suppose
\(\{ x_n \}_{n=1}^\infty\) and
\(\{ y_n \}_{n=1}^\infty\) are convergent sequences and write
\(z_n \coloneqq x_n + y_n\text{.}\) Let
\(x \coloneqq \lim_{n\to\infty} x_n\text{,}\) \(y \coloneqq \lim_{n\to\infty} y_n\text{,}\) and
\(z \coloneqq x+y\text{.}\)
Let \(\epsilon > 0\) be given. Find an \(M_1\) such that for all \(n \geq M_1\text{,}\) we have \(\abs{x_n - x} < \nicefrac{\epsilon}{2}\text{.}\) Find an \(M_2\) such that for all \(n \geq M_2\text{,}\) we have \(\abs{y_n - y} < \nicefrac{\epsilon}{2}\text{.}\) Take \(M \coloneqq \max \{ M_1, M_2 \}\text{.}\) For all \(n \geq M\text{,}\) we have
\begin{equation*}
\begin{split}
\abs{z_n - z} &=
\abs{(x_n+y_n) - (x+y)} \\
& =
\abs{x_n-x + y_n-y} \\
& \leq
\abs{x_n-x} + \abs{y_n-y} \\
& <
\frac{\epsilon}{2} +
\frac{\epsilon}{2}
= \epsilon.
\end{split}
\end{equation*}
Therefore
i is proved. Proof of
ii is almost identical and is left as an exercise.
Let us tackle
iii. Suppose again that
\(\{ x_n \}_{n=1}^\infty\) and
\(\{ y_n \}_{n=1}^\infty\) are convergent sequences and write
\(z_n \coloneqq x_n y_n\text{.}\) Let
\(x \coloneqq \lim_{n\to\infty} x_n\text{,}\) \(y \coloneqq \lim_{n\to\infty} y_n\text{,}\) and
\(z \coloneqq xy\text{.}\)
Let \(\epsilon > 0\) be given. Let \(K \coloneqq \max\{ \abs{x}, \abs{y}, \nicefrac{\epsilon}{3} , 1 \}\text{.}\) Find an \(M_1\) such that for all \(n \geq M_1\text{,}\) we have \(\abs{x_n - x} < \frac{\epsilon}{3K}\text{.}\) Find an \(M_2\) such that for all \(n \geq M_2\text{,}\) we have \(\abs{y_n - y} < \frac{\epsilon}{3K}\text{.}\) Take \(M \coloneqq \max \{ M_1, M_2 \}\text{.}\) For all \(n \geq M\text{,}\) we have
\begin{equation*}
\begin{split}
\abs{z_n - z} &=
\abs{(x_ny_n) - (xy)} \\
& =
\abs{(x_n-x+x)(y_n-y+y) - xy} \\
& =
\abs{(x_n-x)y + x(y_n-y) +(x_n-x)(y_n-y)} \\
& \leq
\abs{(x_n-x)y} + \abs{x(y_n - y)} +
\abs{(x_n-x)(y_n-y)} \\
& =
\abs{x_n -x}\abs{y} +
\abs{x}\abs{y_n -y} +
\abs{x_n -x}\abs{y_n -y}
\\
& <
\frac{\epsilon}{3K} K +
K \frac{\epsilon}{3K} +
\frac{\epsilon}{3K}
\frac{\epsilon}{3K}
\qquad \qquad \text{(now notice that } \tfrac{\epsilon}{3K} \leq 1
\text{ and }
K \geq 1\text{)}
\\
& \leq
\frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3}
= \epsilon .
\end{split}
\end{equation*}
Finally, we examine
iv. Instead of proving
iv directly, we prove the following simpler claim:
Claim: If \(\{ y_n \}_{n=1}^\infty\) is a convergent sequence such that \(\lim_{n\to\infty} y_n \not= 0\) and \(y_n \not= 0\) for all \(n \in \N\text{,}\) then \(\{ \nicefrac{1}{y_n} \}_{n=1}^\infty\) converges and
\begin{equation*}
\lim_{n\to\infty} \frac{1}{y_n} = \frac{1}{\lim_{n\to\infty} y_n} .
\end{equation*}
Once the claim is proved, we take the sequence
\(\{ \nicefrac{1}{y_n} \}_{n=1}^\infty\text{,}\) multiply it by the sequence
\(\{ x_n \}_{n=1}^\infty\) and apply item
iii.
Proof of claim: Let \(\epsilon > 0\) be given. Let \(y \coloneqq \lim_{n\to\infty} y_n\text{.}\) As \(\abs{y} \not= 0\text{,}\) then \(\min \left\{ \abs{y}^2\frac{\epsilon}{2}, \, \frac{\abs{y}}{2} \right\} > 0\text{.}\) Find an \(M\) such that for all \(n \geq M\text{,}\) we have
\begin{equation*}
\abs{y_n - y} < \min \left\{ \abs{y}^2\frac{\epsilon}{2}, \, \frac{\abs{y}}{2}
\right\} .
\end{equation*}
For all \(n \geq M\text{,}\) we have \(\abs{y - y_n} < \nicefrac{\abs{y}}{2}\text{,}\) and so
\begin{equation*}
\abs{y} =
\abs{y - y_n + y_n } \leq
\abs{y - y_n} + \abs{ y_n } < \frac{\abs{y}}{2} + \abs{y_n}.
\end{equation*}
Subtracting \(\nicefrac{\abs{y}}{2}\) from both sides we obtain \(\nicefrac{\abs{y}}{2} < \abs{y_n}\text{,}\) or in other words,
\begin{equation*}
\frac{1}{\abs{y_n}} < \frac{2}{\abs{y}} .
\end{equation*}
We finish the proof of the claim:
\begin{equation*}
\begin{split}
\abs{\frac{1}{y_n} - \frac{1}{y}} &=
\abs{\frac{y - y_n}{y y_n}} \\
& =
\frac{\abs{y - y_n}}{\abs{y} \abs{y_n}} \\
& \leq
\frac{\abs{y - y_n}}{\abs{y}} \, \frac{2}{\abs{y}} \\
& <
\frac{\abs{y}^2 \frac{\epsilon}{2}}{\abs{y}} \, \frac{2}{\abs{y}}
= \epsilon .
\end{split}
\end{equation*}
And we are done.
By plugging in constant sequences, we get several easy corollaries. If \(c \in \R\) and \(\{ x_n \}_{n=1}^\infty\) is a convergent sequence, then for example
\begin{equation*}
\lim_{n \to \infty} c x_n =
c \left( \lim_{n \to \infty} x_n \right) \qquad
\text{and}
\qquad
\lim_{n \to \infty} (c + x_n) =
c + \lim_{n \to \infty} x_n .
\end{equation*}
Similarly, we find such equalities for constant subtraction and division.
Of course, to even make this statement, we need to apply
Corollary 2.2.4 to show that
\(\lim_{n\to\infty} x_n \geq 0\text{,}\) so that we can take the square root without worry.
Proof.
Let \(\{ x_n \}_{n=1}^\infty\) be a convergent sequence and let \(x \coloneqq
\lim_{n\to\infty} x_n\text{.}\) As we just mentioned, \(x \geq 0\text{.}\)
First suppose \(x=0\text{.}\) Let \(\epsilon > 0\) be given. Then there is an \(M\) such that for all \(n \geq M\text{,}\) we have \(x_n = \abs{x_n} < \epsilon^2\text{,}\) or in other words, \(\sqrt{x_n} < \epsilon\text{.}\) Hence,
\begin{equation*}
\abs{\sqrt{x_n} - \sqrt{x}} =
\sqrt{x_n} < \epsilon.
\end{equation*}
Now suppose \(x > 0\) (and hence \(\sqrt{x} > 0\)).
\begin{equation*}
\begin{split}
\abs{\sqrt{x_n}-\sqrt{x}} &=
\abs{\frac{x_n-x}{\sqrt{x_n}+\sqrt{x}}} \\
&=
\frac{1}{\sqrt{x_n}+\sqrt{x}}
\abs{x_n-x} \\
& \leq
\frac{1}{\sqrt{x}}
\abs{x_n-x} .
\end{split}
\end{equation*}
We leave the rest of the proof to the reader.
Let us see an example putting the propositions above together. Since \(\lim_{n\to\infty} \nicefrac{1}{n} = 0\text{,}\) then
\begin{equation*}
\lim_{n\to \infty}
\abs{\sqrt{1 + \nicefrac{1}{n}} - \nicefrac{100}{n^2}} =
\abs{\sqrt{1 + \Bigl(\lim_{n\to\infty} \nicefrac{1}{n}\Bigr)}
- 100 \Bigl(\lim_{n\to\infty} \nicefrac{1}{n}\Bigr)\Bigl(\lim_{n\to\infty} \nicefrac{1}{n}\Bigr)} = 1.
\end{equation*}
That is, the limit on the left-hand side exists because the right-hand side exists. You really should read the equality above from right to left.
On the other hand you must apply the propositions carefully. For example, by rewriting the expression with common denominator first we find
\begin{equation*}
\lim_{n\to \infty} \left( \frac{n^2}{n+1} - n \right)
= -1 .
\end{equation*}
However, \(\bigl\{ \frac{n^2}{n+1} \bigr\}_{n=1}^\infty\) and \(\{n\}_{n=1}^\infty\) are not convergent, so \(\Bigl(\lim\limits_{n\to\infty} \frac{n^2}{n+1}\Bigr) -
\Bigl(\lim\limits_{n\to\infty} n\Bigr)\) is nonsense.