Using the notation from the definition of the integral, \(m_i \leq f(c_i) \leq M_i\text{,}\) and multiplying by \(\Delta x_i\) gets
\begin{equation*}
m_i \Delta x_i \leq F(x_i) - F(x_{i-1}) \leq M_i \Delta x_i .
\end{equation*}
We sum over \(i = 1,2, \ldots, n\) to get
\begin{equation*}
\sum_{i=1}^n m_i \Delta x_i
\leq \sum_{i=1}^n \bigl(F(x_i) - F(x_{i-1}) \bigr)
\leq \sum_{i=1}^n M_i \Delta x_i .
\end{equation*}
In the middle sum, all the terms except the first and last cancel and we end up with \(F(x_n)-F(x_0) = F(b)-F(a)\text{.}\) The sums on the left and on the right are the lower and the upper sum respectively. So
\begin{equation*}
L(P,f) \leq F(b)-F(a) \leq U(P,f) .
\end{equation*}
We take the supremum of \(L(P,f)\) over all partitions \(P\) and the left inequality yields
\begin{equation*}
\underline{\int_a^b} f \leq F(b)-F(a) .
\end{equation*}
Similarly, taking the infimum of \(U(P,f)\) over all partitions \(P\) yields
\begin{equation*}
F(b)-F(a) \leq \overline{\int_a^b} f .
\end{equation*}
As \(f\) is Riemann integrable, we have
\begin{equation*}
\int_a^b f =
\underline{\int_a^b} f \leq F(b)-F(a) \leq \overline{\int_a^b} f
= \int_a^b f .
\end{equation*}
The inequalities must be equalities and we are done.