Argument (z)
Aliases: Arg
arg
argument (angle) of complex number
DirichletKernel (n,t)
Dirichlet kernel of order n
DiscreteDelta (v)
Returns 1 iff all elements are zero
ErrorFunction (x)
Aliases: erf
The error function, 2/sqrt(pi) * int_0^x e^(-t^2) dt
See Planetmath for more information.
FejerKernel (n,t)
Fejer kernel of order n
evaluated at
t
See Planetmath for more information.
GammaFunction (x)
Aliases: Gamma
The Gamma function. Currently only implemented for real values.
See Planetmath for more information.
KroneckerDelta (v)
Returns 1 iff all elements are equal
MinimizeFunction (func,x,incr)
Find the first value where f(x)=0
MoebiusDiskMapping (a,z)
Moebius mapping of the disk to itself mapping a to 0
See Planetmath for more information.
MoebiusMapping (z,z2,z3,z4)
Moebius mapping using the cross ratio taking z2,z3,z4 to 1,0, and infinity respectively
See Planetmath for more information.
MoebiusMappingInftyToInfty (z,z2,z3)
Moebius mapping using the cross ratio taking infinity to infinity and z2,z3 to 1 and 0 respectively
See Planetmath for more information.
MoebiusMappingInftyToOne (z,z3,z4)
Moebius mapping using the cross ratio taking infinity to 1 and z3,z4 to 0 and infinity respectively
See Planetmath for more information.
MoebiusMappingInftyToZero (z,z2,z4)
Moebius mapping using the cross ratio taking infinity to 0 and z2,z4 to 1 and infinity respectively
See Planetmath for more information.
PoissonKernel (r,sigma)
Poisson kernel on D(0,1) (not normalized to 1, that is integral of this is 2pi)
PoissonKernelRadius (r,sigma)
Poisson kernel on D(0,R) (not normalized to 1)
RiemannZeta (x)
Aliases: zeta
The Riemann zeta function. Currently only implemented for real values.
See Planetmath for more information.
UnitStep (x)
The unit step function is 0 for x<0, 1 otherwise. This is the integral of the Dirac Delta function.
cis (x)
The cis
function, that is the same as
cos(x)+1i*sin(x)
deg2rad (x)
Convert degrees to radians
rad2deg (x)
Convert radians to degrees