Example 1.5.1.
Solve
\begin{equation*}
xy'+ y(x+1)+xy^5 = 0, \qquad y(1)=1 .
\end{equation*}
The equation is a Bernoulli equation, \(p(x) = (x+1)/x\) and \(q(x) = -1\text{.}\) We substitute
\begin{equation*}
v=y^{1-5} = y^{-4}, \qquad
v' = -4 y^{-5} y' .
\end{equation*}
In other words, \(\left( \nicefrac{-1}{4} \right) y^5 v' = y'\text{.}\) So
\begin{equation*}
\begin{aligned}
xy'+ y(x+1)+xy^5 & = 0 , \\
\frac{-xy^5}{4} v'+ y(x+1)+xy^5 & = 0 , \\
\frac{-x}{4} v'+ y^{-4}(x+1)+x & = 0 , \\
\frac{-x}{4} v'+ v(x+1)+x & = 0 ,
\end{aligned}
\end{equation*}
and finally
\begin{equation*}
v'- \frac{4(x+1)}{x} v = 4 .
\end{equation*}
The equation is now linear. We can use the integrating factor method. In particular, we use formula (1.4). We assume that \(x > 0\) so \(\lvert x \rvert = x\text{.}\) This assumption is OK, as our initial condition is at \(x=1 > 0\text{.}\) Let us compute the integrating factor. Here \(p(s)\) from formula (1.4) is \(\frac{-4(s+1)}{s}\text{.}\)
\begin{equation*}
\begin{aligned}
e^{\int_1^x p(s)\,ds} & = \exp \left( \int_1^x \frac{-4(s+1)}{s} \,ds \right) =
e^{-4x-4\ln(x)+4} =
e^{-4x+4} x^{-4}
=
\frac{e^{-4x+4}}{x^4} , \\
e^{-\int_1^x p(s)\,ds} & =
e^{4x+4\ln(x)-4} =
e^{4x-4} x^4 .
\end{aligned}
\end{equation*}
We now plug in to (1.4)
\begin{equation*}
\begin{split}
v(x) & =
e^{-\int_{1}^x p(s)\, ds} \left( \int_{1}^x e^{\int_{1}^t p(s)\, ds} 4 \,dt
+ 1 \right) \\
& =
e^{4x-4} x^4
\left( \int_{1}^x 4 \frac{e^{-4t+4}}{t^4} \,dt
+ 1 \right) .
\end{split}
\end{equation*}
The integral in this expression is not possible to find in closed form. As we said before, it is perfectly fine to have a definite integral in our solution. Now “unsubstitute”
\begin{equation*}
\begin{aligned}
y^{-4} &= e^{4x-4}x^4 \left( 4 \int_1^x \frac{e^{-4t+4}}{t^4} \,dt + 1\right) , \\
y &= \frac{e^{-x+1}}{x {\left( 4 \int_1^x \frac{e^{-4t+4}}{t^4} \,dt +
1\right)}^{1/4}} .
\end{aligned}
\end{equation*}