The simplest thing we can do is to just compute the series up to a certain number of terms. There are better ways to approximate the exponential. In many cases, however, few terms of the Taylor series give a reasonable approximation for the exponential and may suffice for the application. For example, let us compute the first 4 terms of the series for the matrix \(A =
\left[ \begin{smallmatrix}
1 & 2 \\
2 & 1
\end{smallmatrix} \right]\text{.}\)
\begin{multline*}
e^{tA}
\approx
I + tA + \frac{t^2}{2}A^2 + \frac{t^3}{6}A^3
=
I + t
\begin{bmatrix}
1 & 2 \\
\noalign{\smallskip}
2 & 1
\end{bmatrix}
+ t^2
\begin{bmatrix}
\frac{5}{2} & 2 \\
\noalign{\smallskip}
2 & \frac{5}{2}
\end{bmatrix}
+ t^3
\begin{bmatrix}
\frac{13}{6} & \frac{7}{3} \\
\noalign{\smallskip}
\frac{7}{3} & \frac{13}{6}
\end{bmatrix}
=
\\
=
\begin{bmatrix}
1 + t + \frac{5}{2}\, t^2 + \frac{13}{6}\, t^3 &
2\,t + 2\, t^2 + \frac{7}{3}\, t^3 \\
\noalign{\smallskip}
2\,t + 2\, t^2 + \frac{7}{3}\, t^3 &
1 + t + \frac{5}{2}\, t^2 + \frac{13}{6}\, t^3
\end{bmatrix} .
\end{multline*}
Just like the scalar version of the Taylor series approximation, the approximation will be better for small \(t\) and worse for larger \(t\text{.}\) For larger \(t\text{,}\) we will generally have to compute more terms. Let us see how we stack up against the real solution with \(t=0.1\text{.}\) The approximate solution is approximately (rounded to 8 decimal places)
\begin{equation*}
e^{0.1\,A} \approx
I + 0.1\,A + \frac{0.1^2}{2}A^2 + \frac{0.1^3}{6}A^3
=
\begin{bmatrix}
1.12716667 & 0.22233333 \\
0.22233333 & 1.12716667 \\
\end{bmatrix} .
\end{equation*}
And plugging \(t=0.1\) into the real solution (rounded to 8 decimal places) we get
\begin{equation*}
e^{0.1\,A} =
\begin{bmatrix}
1.12734811 & 0.22251069 \\
0.22251069 & 1.12734811
\end{bmatrix} .
\end{equation*}
Not bad at all! Although if we take the same approximation for \(t=1\) we get
\begin{equation*}
I + A + \frac{1}{2}A^2 + \frac{1}{6}A^3
=
\begin{bmatrix}
6.66666667 & 6.33333333 \\
6.33333333 & 6.66666667
\end{bmatrix} ,
\end{equation*}
while the real value is (again rounded to 8 decimal places)
\begin{equation*}
e^{A} =
\begin{bmatrix}
10.22670818 & \phantom{0}9.85882874 \\
\phantom{0}9.85882874 & 10.22670818
\end{bmatrix} .
\end{equation*}
So the approximation is not very good once we get up to \(t=1\text{.}\) To get a good approximation at \(t=1\) (say up to 2 decimal places) we would need to go up to the \({11}^{\text{th}}\) power (exercise).