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Let U c C be open and suppose that K C U is compact and nonempty. Then there exists a cycle T
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We will map to the disk, but with a twist. We’ll take C, \ K to the disc, and go around the
“outside” in the opposite direction:
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So without loss of generality, assume that K is connected.
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Suppose Co, \ U is disconnected.

Write SU K = Cq \ U where S and K are nonempty, closed, and disjoint.
Assume oo € S.

U =UUKisopenasSisclosed, U cC, K c U iscompact.

Apply lemma to find a cycleI'in U = U’ \ Ksuch that n(I’;z) = 1 forall z € K.

In other words, I' is not homologous to zero in U.



Exercise: Suppose {f,} is a sequence of holomorphic functions on an open set U C C that
converges uniformly on compact subsets to a nonconstant f: U — C. Let K ¢ Ube a
compact set. Prove that for every open neighborhood V of Kin U (so K C V C U) there
exists a smaller open neighborhood W (so K ¢ W € V) and an N € N such that f and f;,
have the same number of zeros in W for all n > N.



