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Consider the primitive of zn.

If n ≠ −1, the primitive is zn+1

n + 1 (not defined at z = 0 if n + 1 < 0)

What about z−1 = 1/z?

Consider the slit plane

U = ℂ \ (−∞, 0] = ℂ \
{
z ∈ ℂ : Re z ≤ 0, Im z = 0

}
.

U is star-like ⇒ holomorphic functions on U have a primitive on U, including 1/z.

Require this primitive to be 0 at z = 1 to obtain the principal branch of the logarithm:

Log: U → ℂ

We want to show Log z = log|z| + i Arg z (principal branch of the argument).
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Set L(z) = log|z| + i Arg z (WTS that L = Log).

L(1) = 0 = Log(1), good!

eL(z) = elog|z|ei Arg z = |z|ei Arg z = z.

L is the inverse of the exponential ⇒ L is holomorphic.

Differentiate z = eL(z): 1 = L′(z)eL(z) = L′(z)z.

Et voilà!

Using a different branch of the argument gets another antiderivative.

Emboldened, we define
log z def

= log|z| + i arg z.

That sounds crazy:
1) The log on the right (the real log) is different than the log on the left, and
2) arg has infinitely many values.



Set L(z) = log|z| + i Arg z (WTS that L = Log).

L(1) = 0 = Log(1), good!

eL(z) = elog|z|ei Arg z = |z|ei Arg z = z.

L is the inverse of the exponential ⇒ L is holomorphic.

Differentiate z = eL(z): 1 = L′(z)eL(z) = L′(z)z.

Et voilà!

Using a different branch of the argument gets another antiderivative.

Emboldened, we define
log z def

= log|z| + i arg z.

That sounds crazy:
1) The log on the right (the real log) is different than the log on the left, and
2) arg has infinitely many values.



Set L(z) = log|z| + i Arg z (WTS that L = Log).

L(1) = 0 = Log(1), good!

eL(z) = elog|z|ei Arg z = |z|ei Arg z = z.

L is the inverse of the exponential ⇒ L is holomorphic.

Differentiate z = eL(z): 1 = L′(z)eL(z) = L′(z)z.

Et voilà!

Using a different branch of the argument gets another antiderivative.

Emboldened, we define
log z def

= log|z| + i arg z.

That sounds crazy:
1) The log on the right (the real log) is different than the log on the left, and
2) arg has infinitely many values.



Set L(z) = log|z| + i Arg z (WTS that L = Log).

L(1) = 0 = Log(1), good!

eL(z) = elog|z|ei Arg z = |z|ei Arg z = z.

L is the inverse of the exponential ⇒ L is holomorphic.

Differentiate z = eL(z): 1 = L′(z)eL(z) = L′(z)z.

Et voilà!

Using a different branch of the argument gets another antiderivative.

Emboldened, we define
log z def

= log|z| + i arg z.

That sounds crazy:
1) The log on the right (the real log) is different than the log on the left, and
2) arg has infinitely many values.



Set L(z) = log|z| + i Arg z (WTS that L = Log).

L(1) = 0 = Log(1), good!

eL(z) = elog|z|ei Arg z = |z|ei Arg z = z.

L is the inverse of the exponential ⇒ L is holomorphic.

Differentiate z = eL(z):

1 = L′(z)eL(z) = L′(z)z.

Et voilà!

Using a different branch of the argument gets another antiderivative.

Emboldened, we define
log z def

= log|z| + i arg z.

That sounds crazy:
1) The log on the right (the real log) is different than the log on the left, and
2) arg has infinitely many values.



Set L(z) = log|z| + i Arg z (WTS that L = Log).

L(1) = 0 = Log(1), good!

eL(z) = elog|z|ei Arg z = |z|ei Arg z = z.

L is the inverse of the exponential ⇒ L is holomorphic.

Differentiate z = eL(z): 1 = L′(z)eL(z) = L′(z)z.

Et voilà!

Using a different branch of the argument gets another antiderivative.

Emboldened, we define
log z def

= log|z| + i arg z.

That sounds crazy:
1) The log on the right (the real log) is different than the log on the left, and
2) arg has infinitely many values.



Set L(z) = log|z| + i Arg z (WTS that L = Log).

L(1) = 0 = Log(1), good!

eL(z) = elog|z|ei Arg z = |z|ei Arg z = z.

L is the inverse of the exponential ⇒ L is holomorphic.

Differentiate z = eL(z): 1 = L′(z)eL(z) = L′(z)z.
Et voilà!

Using a different branch of the argument gets another antiderivative.

Emboldened, we define
log z def

= log|z| + i arg z.

That sounds crazy:
1) The log on the right (the real log) is different than the log on the left, and
2) arg has infinitely many values.



Set L(z) = log|z| + i Arg z (WTS that L = Log).

L(1) = 0 = Log(1), good!

eL(z) = elog|z|ei Arg z = |z|ei Arg z = z.

L is the inverse of the exponential ⇒ L is holomorphic.

Differentiate z = eL(z): 1 = L′(z)eL(z) = L′(z)z.
Et voilà!

Using a different branch of the argument gets another antiderivative.

Emboldened, we define
log z def

= log|z| + i arg z.

That sounds crazy:
1) The log on the right (the real log) is different than the log on the left, and
2) arg has infinitely many values.



Set L(z) = log|z| + i Arg z (WTS that L = Log).

L(1) = 0 = Log(1), good!

eL(z) = elog|z|ei Arg z = |z|ei Arg z = z.

L is the inverse of the exponential ⇒ L is holomorphic.

Differentiate z = eL(z): 1 = L′(z)eL(z) = L′(z)z.
Et voilà!

Using a different branch of the argument gets another antiderivative.

Emboldened, we define
log z def

= log|z| + i arg z.

That sounds crazy:
1) The log on the right (the real log) is different than the log on the left, and
2) arg has infinitely many values.



Set L(z) = log|z| + i Arg z (WTS that L = Log).

L(1) = 0 = Log(1), good!

eL(z) = elog|z|ei Arg z = |z|ei Arg z = z.

L is the inverse of the exponential ⇒ L is holomorphic.

Differentiate z = eL(z): 1 = L′(z)eL(z) = L′(z)z.
Et voilà!

Using a different branch of the argument gets another antiderivative.

Emboldened, we define
log z def

= log|z| + i arg z.

That sounds crazy:

1) The log on the right (the real log) is different than the log on the left, and
2) arg has infinitely many values.



Set L(z) = log|z| + i Arg z (WTS that L = Log).

L(1) = 0 = Log(1), good!

eL(z) = elog|z|ei Arg z = |z|ei Arg z = z.

L is the inverse of the exponential ⇒ L is holomorphic.

Differentiate z = eL(z): 1 = L′(z)eL(z) = L′(z)z.
Et voilà!

Using a different branch of the argument gets another antiderivative.

Emboldened, we define
log z def

= log|z| + i arg z.

That sounds crazy:
1) The log on the right (the real log) is different than the log on the left, and

2) arg has infinitely many values.



Set L(z) = log|z| + i Arg z (WTS that L = Log).

L(1) = 0 = Log(1), good!

eL(z) = elog|z|ei Arg z = |z|ei Arg z = z.

L is the inverse of the exponential ⇒ L is holomorphic.

Differentiate z = eL(z): 1 = L′(z)eL(z) = L′(z)z.
Et voilà!

Using a different branch of the argument gets another antiderivative.

Emboldened, we define
log z def

= log|z| + i arg z.

That sounds crazy:
1) The log on the right (the real log) is different than the log on the left, and
2) arg has infinitely many values.



Here are the real and imaginary parts of log z = log|z| + i arg z:

Re z Im z
Re z Im z

If we travel the unit circle in the z-plane, we travel the marked path on the graph.

The real part is a nice function, it is the normal real log: (0,∞) → ℝ applied to |z|.

The imaginary part has infinitely many values.

Nevertheless, it is the correct definition. Much more useful than the principal branch.
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How do we use log? To compute line integrals:

Parametrize 𝜕𝔻 starting and ending at z = 1 and compute:∫
𝜕𝔻

1
z

dz = log 1 − log 1 = 2𝜋i.

That’s nonsense! Let’s make it better:∫
𝜕𝔻

1
z

dz “=” log 1 − log 1 “=” 2𝜋i.

Maybe still not quite right.

It works by following one “branch” of the logarithm along the path and then subtracting.

Let’s see that graph again.
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What we do:

We start with the value log 1 = 0.

Then we follow the graph around the circle until we end at log 1 = 2𝜋i.
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A branch of the logarithm in U is an antiderivative of 1/z in U that equals one value of log z
at every point.

We follow a branch along a path by taking a branch in a (small enough) neighborhood,
then change to another branch in another neighborhood (equal at some point). Etc.

That’s what we did in the computation above.
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