Cultivating Complex Analysis:
Laurent series (4.4 part 2)

Jif{ Lebl

Departemento pri Matematiko de Oklahoma Stata Universitato



Theorem (Existence of Laurent series)

Suppose that 0 < r; < ry < oo and f: ann(p; r1,r2) — C is holomorphic.




Theorem (Existence of Laurent series)

Suppose that 0 < r1 < ry < ooand f: ann(p; r1,r2) — C is holomorphic. Then there exist unique
numbers ¢, € C for n € Z such that

[ee]

f@= > cz-p),

n=-—oo

converging uniformly absolutely on compact subsets of ann(p; r1, 12).




Theorem (Existence of Laurent series)

Suppose that 0 < r1 < ry < ooand f: ann(p; r1,r2) — C is holomorphic. Then there exist unique
numbers ¢, € C for n € Z such that
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converging uniformly absolutely on compact subsets of ann(p; r1,r2). The numbers ¢, are given by
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where y is any circle of radius s, r1 < s < ry, centered at p oriented counterclockwise.
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We will expand the two integrals separately.
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We can swap the series limit with the integral as the convergence is uniform on the circle.
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For any € > 0, the geometric series used for the first part converges uniformly absolutely
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So the resulting series converges uniformly absolutely on compact subsets of A, (p).

The geometric series used for the second part converges uniformly absolutely when
| tr| - 51 <1

— €.

So the resulting series converges uniformly absolutely on compact subsets of C \ A, (p).
Any compact subset of ann(p; r1, r2) is a compact inside both of these for some sy, s,.

So the full series converges uniformly absolutely on compact subsets of ann(p; r1, 2).
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Suppose
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Then
1 / f© 1 N " 1
n=ne | T dl= o d(C = p)" | = dC
27 Jony C=p)™ 27 Jan 2. C-p"

n=—00

_ 1 S _ o yn—m-1 _

— o Y [ @epr A= dy
n=—oo dAs(p)

(The last equality because [, ® (C=p)" ™ 1dC # 0 only when 1 = m.)
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Exercise: Suppose f and g are holomorphic functions defined on ann(p; 1, 2). Let a, be
the coefficients in the Laurent series for f and b, be the coefficients in the Laurent series for
g. Suppose that a, f € C. Show that the Laurent series for the function af + g has
coefficients aa, + pb,.

Exercise: Expand the function f(z) = in the sets ann(0;0, 1), ann(0; 1, 2), and

1
(z-1)(z-2)
ann(0; 2, o).



