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Analytic functions are functions equal to a convergent power series near every point.
Definition

Let U ¢ Cbe open. A function f: U — C is analytic if for every p € U, there exists an » > 0
and a power series Y’ ¢,(z — p)" converging to f on A,(p) C U.




Analytic functions are functions equal to a convergent power series near every point.
Definition

Let U ¢ Cbe open. A function f: U — C is analytic if for every p € U, there exists an » > 0
and a power series Y’ ¢,(z — p)" converging to f on A,(p) C U.

Eventually, we will see that function is holomorphic if and only if it is analytic.



Analytic functions are functions equal to a convergent power series near every point.

Definition
Let U ¢ Cbe open. A function f: U — C is analytic if for every p € U, there exists an » > 0
and a power series Y’ ¢,(z — p)" converging to f on A,(p) C U.

Eventually, we will see that function is holomorphic if and only if it is analytic.

But that is not so easy. Today we will prove that analytic = holomorphic.



Analytic functions are functions equal to a convergent power series near every point.

Definition
Let U c C be open. A function f: U — C is analytic if for every p € U, there exists anr > 0
and a power series Y’ ¢,(z — p)" converging to f on A,(p) C U.
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Remark: A subtle point is that it is not immediate that a convergent power series is
analytic.
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A consequence is that the power series is unique since the coefficients are unique

f7p).
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In fact, ¢, depends only on values of f in arbitrarily small neighborhood of p.

Applied to the analytic functions we get:

Corollary

An analytic function is infinitely complex differentiable, and each derivative is analytic.




