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So a uniformly absolutely convergent series converges uniformly.
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Exercise: (Weierstrass M-test) Let X be a set and f,,: X — C is a sequence of functions such
that |[f,(x)| < M, forall x € Xand n € N.

If ) M, < oo, then }’ f,(x) converges uniformly absolutely on X.

Exercise: Suppose )" a,2" and )" b,z" have a radius of convergence at least r > 0.
Show that ), (a, + b,)z" has a radius of convergence at least r and converges to the sum
of the two series.



