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Consider a power series
∞∑

n=0
cn(z − p)n.

Define R =
1

lim sup
n→∞

n
√
|cn |

. We interpret 1/∞ = 0 and 1/0 = ∞, so R = ∞ is allowed.

Let r = |z − p|. By the root test, the series
∑|cn |rn converges if

lim sup
n→∞

n
√
|cn |rn = r lim sup

n→∞

n
√
|cn | = r 1

R
< 1.

So the power series converges absolutely when r < R.

If r 1
R > 1, then for infinitely many n, |cn(z − p)n | > 1. ⇒ The power series diverges if r > R.

Proposition (Cauchy–Hadamard theorem)∑
cn(z − p)n converges absolutely if |z − p| < R and diverges if |z − p| > R.
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R =
1

lim sup
n→∞

n
√
|cn |

R
p

does not converge
seriesabsolutely

series
converges

If 0 < R < ∞,
the power series converges absolutely in the disc ΔR(p).

It diverges in the complement of the closure ΔR(p).

Convergence (or divergence) on the boundary circle 𝜕ΔR(p) is tricky.

R = 0 means the power series diverges, R = ∞ means it converges in ℂ.

R is called the radius of convergence.
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Proposition
The series

∑
cn(z − p)n converges in ΔR(p) for some R > 0 if and only if for every r with 0 < r < R,

there exists an M > 0 such that
|cn | ≤

M
rn for all n.

So the sequence
{
|cn |rn} is bounded whenever 0 < r < R.

But
{
|cn |Rn} not necessarily bounded:∑

zn and
∑

nzn have radius of convergence R = 1. The sequence of coefficients is bounded
in the first case and not in the second.

However, {nrn} is bounded for every r < 1.
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Proof: Suppose the series converges in ΔR(p) and 0 < r < R.

Then
∑|cn |rn converges, and the terms are thus bounded.

Conversely, fix r, suppose |cn |rn ≤ M for all n.

Suppose 0 < s < r.

p
r

s

R
n
√
|cn |sn =

s
r

n
√
|cn |rn ≤ s

r
n√M.

The limsup of the RHS is strictly less than 1 as s/r < 1.

The series converges absolutely in Δs(p) by the root test.

As s and r with 0 < s < r < R were arbitrary, the series converges (absolutely) in ΔR(p). □
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