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Goal: Classify relatively compact subsets of the space of holomorphic functions.

We want something like Bolzano-Weierstrass:
If {zy,} is a bounded sequence in C, then it has a convergent subsequence.

But for functions!

Examples:

sin(nx), x € R. Onno interval [4,b] C R does there exist a subsequence converging
pointwise. Not even almost everywhere. (Proof requires some measure theory)

x", x €[0,1]. Converges (pointwise) to a discontinuous function.
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We start with boundedness.

Definition

A sequence f,: X — C is pointwise bounded if for every x € X, there is an M, € R such that
[fa(x)] < My foralln € N.

{fu} is uniformly bounded if there is an M € R such that

fa(x)] <M  foralln e Nandall x € X.

Example:

n2x

To2a is pointwise bounded (converges pointwise) but not uniformly bounded.
n2x
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Proposition

Let X be a countable set and f,: X — C a pointwise bounded sequence of functions. Then {f,} has
a subsequence that converges pointwise.

Proof: Let {x,} , give X.
{fu(x1)},_, isbounded = I subsequence {fi};7, of {fu}, s.t. {fix(x1)};2, converges.
Define subsequences {fyx},-, as follows:

Given a subsequence {fyk} e, Of {fu-1k}.e, that makes {f,, k(xj)};2, converge for all j < m,
Let {fm+1/k}120:1 be a subsequence of {fm,k}l‘;i1 such that {fm+1,k(xm+1)},‘;11 converges
(and so {fin+1,k(xj)}, converges for all j < m + 1).

If X is finite = done.
If X is infinite, pick the subsequence {fix}.2,-

For any m, the tail {fk/k}itim is a subsequence of {fm,k}]‘c’il = {fk,k(xm)}l‘;‘;1 converges. O
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Continuity of the limit will require some uniformity.

Definition
Let (X, d) be a metric space. A set S of functions f: X — C is equicontinuous at x € X if for
every € > 0, thereis a 6 > 0 such thatif y € X with d(x,y) < 9,

If(x) - f(y)| <e  forallf €S.

S is equicontinuous if it is equicontinuous at every x € X.

S is uniformly equicontinuous if for every € > 0, there is a 6 > 0 such that if x, y € X with
d(x,y) <9,
f(x) -fy)| <€ forallf € S.

For finite sets S, same as continuity and uniform continuity.
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Proposition

Let (X, d) be a compact metric space and f,: X — C an equicontinuous sequence of functions.
Then the sequence {f,} is uniformly equicontinuous.

Proof: Suppose {f,;} is not uniformly equicontinuous.
= Je>0s.t VkeN,In € N & xx, yr € X with d(xx, yx) < Ik where |f,, (xk) — fu, (yi)| = €.

WLOG, by compactness and passing to a subseq., {xx} and {yx} converge to some x € X.
For any 6 > 0, take k such that d(x, xx) < 6 and d(x, yx) < 6. Then
€= lfnk(xk) _fnk(]/k)| < Ifnk(xk) _fnk(x)| + Ifnk(x) _fnk(]/k)| .

= Either [fnk (xx) — fnk(x)| or Ifnk (x) = fu, (yk)| is > €/2 (no matter how small 6 is).

= {fu} is not equicontinuous at x. O
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Exercise: Suppose S is a set of (real) differentiable functions f: [0, 1] — R such that
|f'(x)] <1 forall x € [0,1]. Prove that S is uniformly equicontinuous.



