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Define the exponential ez for z ∈ ℂ (using the real exponential and sin/cos):

exp(z) = ez = ex+iy def
= exeiy = ex cos y + iex sin y.

Some immediate properties:

ez̄ = ex−iy = ex cos y − iex sin y = ez , |ez | = |ex+iy | = ex.

Graphs of the real and imaginary part:
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Proposition
For any two complex numbers z,w ∈ ℂ, ez+w = ezew.

Proof is an exercise (requires trig identities).

Euler’s formula (� ∈ ℝ):
ei� = cos� + i sin�.

Meaning for � ∈ ℝ:

cos� = Re ei� =
ei� + e−i�

2 , sin� = Im ei� =
ei� − e−i�

2i
.

We define sin and cos for z ∈ ℂ accordingly:

cos z def
=

eiz + e−iz

2 , sin z def
=

eiz − e−iz

2i
.
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ℂ is just the plane, so we can use polar coordinates for z = x + iy: x = r cos� and y = r sin�.

Due to the Euler formula:

z = rei� = r cos� + ir sin� = x + iy.

�
r

rei�

We call rei� the polar form.

r = |z| =
√

x2 + y2 is the modulus.

� is called the argument.
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Polar form is good for multiplication and powers:

Suppose z = rei� and w = sei𝜓,

zw = rei�sei𝜓 = rsei(�+𝜓) ,
1
z
=

1
rei� =

1
r

e−i� , zn =
(
rei� )n

= rnein� .

Multiplication rotates by the argument and scales by the modulus.

Again note that i = ei𝜋/2 is rotation counterclockwise by 90 degrees.

The downside is that the polar form is terrible for addition.
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