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Goal: Classify relatively compact subsets of the space of holomorphic functions.

We want something like Bolzano–Weierstrass:
If {zn} is a bounded sequence in ℂ, then it has a convergent subsequence.

But for functions!

Examples:

sin(nx), x ∈ ℝ. On no interval [a, b] ⊂ ℝ does there exist a subsequence converging
pointwise. Not even almost everywhere. (Proof requires some measure theory)

xn, x ∈ [0, 1]. Converges (pointwise) to a discontinuous function.
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We start with boundedness.

Definition
A sequence fn : X → ℂ is pointwise bounded if for every x ∈ X, there is an Mx ∈ ℝ such that

|fn(x)| ≤ Mx for all n ∈ ℕ.

{fn} is uniformly bounded if there is an M ∈ ℝ such that

|fn(x)| ≤ M for all n ∈ ℕ and all x ∈ X.

Example:
n2x

1 + n2x2 is pointwise bounded (converges pointwise) but not uniformly bounded.
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Proposition
Let X be a countable set and fn : X → ℂ a pointwise bounded sequence of functions. Then {fn} has
a subsequence that converges pointwise.

Proof: Let {xn}∞n=1 give X.

{fn(x1)}∞n=1 is bounded ⇒ ∃ subsequence {f1,k}∞k=1 of {fn}∞n=1 s.t. {f1,k(x1)}∞k=1 converges.

Define subsequences {fm,k}∞k=1 as follows:

Given a subsequence {fm,k}∞k=1 of {fm−1,k}∞k=1 that makes {fm,k(xj)}∞k=1 converge for all j ≤ m,
Let {fm+1,k}∞k=1 be a subsequence of {fm,k}∞k=1 such that {fm+1,k(xm+1)}∞k=1 converges
(and so {fm+1,k(xj)}∞k=1 converges for all j ≤ m + 1).

If X is finite ⇒ done.

If X is infinite, pick the subsequence {fk,k}∞k=1.

For any m, the tail {fk,k}∞k=m is a subsequence of {fm,k}∞k=1 ⇒ {fk,k(xm)}∞k=1 converges. □
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Continuity of the limit will require some uniformity.

Definition
Let (X, d) be a metric space. A set S of functions f : X → ℂ is equicontinuous at x ∈ X if for
every 𝜖 > 0, there is a 𝛿 > 0 such that if y ∈ X with d(x, y) < 𝛿,

|f (x) − f (y)| < 𝜖 for all f ∈ S.

S is equicontinuous if it is equicontinuous at every x ∈ X.

S is uniformly equicontinuous if for every 𝜖 > 0, there is a 𝛿 > 0 such that if x, y ∈ X with
d(x, y) < 𝛿,

|f (x) − f (y)| < 𝜖 for all f ∈ S.

For finite sets S, same as continuity and uniform continuity.
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For compact sets, equicontinuity implies uniform equicontinuity (as one would expect)

Proposition
Let (X, d) be a compact metric space and fn : X → ℂ an equicontinuous sequence of functions.
Then the sequence {fn} is uniformly equicontinuous.

Proof: Suppose {fn} is not uniformly equicontinuous.
⇒ ∃ 𝜖 > 0 s.t. ∀k ∈ ℕ, ∃ nk ∈ ℕ & xk , yk ∈ X with d(xk , yk) < 1/k where |fnk(xk) − fnk(yk)| ≥ 𝜖.

WLOG, by compactness and passing to a subseq., {xk} and {yk} converge to some x ∈ X.

For any 𝛿 > 0, take k such that d(x, xk) < 𝛿 and d(x, yk) < 𝛿. Then

𝜖 ≤
��fnk(xk) − fnk(yk)

�� ≤ ��fnk(xk) − fnk(x)
�� + ��fnk(x) − fnk(yk)

�� .
⇒ Either

��fnk(xk) − fnk(x)
�� or

��fnk(x) − fnk(yk)
�� is ≥ 𝜖/2 (no matter how small 𝛿 is).

⇒ {fn} is not equicontinuous at x. □
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Exercise: Suppose (X, d) is a compact metric space, and a sequence of continuous
fn : X → ℂ converges uniformly. Prove that {fn} is uniformly equicontinuous.

Exercise: Suppose S is a set of (real) differentiable functions f : [0, 1] → ℝ such that
|f ′(x)| ≤ 1 for all x ∈ [0, 1]. Prove that S is uniformly equicontinuous.
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