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Definition
Let U ⊂ ℂ be open and Γ a cycle in U such that n(Γ; p) = 0 for all p ∈ ℂ \ U, then we say Γ is
homologous to zero in U.

“homologous to zero in U” = “does not wind around any point in ℂ \ U.”

Note: “homologous to zero“ does not mean “equivalent to zero.”

Example: In U = ℂ, every Γ is homologous to zero.

Example: The unit circle is homologous to zero in ℂ, but not homologous to zero in ℂ \ {0}.

Theorem (Cauchy integral formula (homology version))
Suppose U ⊂ ℂ is open, f : U → ℂ is holomorphic, and Γ is a cycle in U homologous to zero in U.
Then for z ∈ U \ Γ,

n(Γ; z) f (z) = 1
2𝜋i

∫
Γ

f (�)
� − z

d�.
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Proof: Define g : U × U → ℂ by

g(�, z) =
{

f (�)−f (z)
�−z if � ≠ z,

f ′(�) if � = z.

Exercise: g(�, z) is continuous in U × U, and
z ↦→ g(�, z) is holomorphic for every fixed � ∈ U.

Let
h(z) =

{∫
Γ

g(�, z) d� if z ∈ U,∫
Γ

f (�)
�−z d� if z ∉ Γ and n(Γ; z) = 0.

h(z) is defined for all z ∈ ℂ (as n(Γ; z) = 0 for all z ∈ ℂ \ U).

But, at some points we have two definitions!

Suppose z ∈ U \ Γ and n(Γ; z) = 0.∫
Γ

g(�, z) d� =

∫
Γ

f (�) − f (z)
� − z

d� =

∫
Γ

f (�)
� − z

d� − f (z)(2𝜋i)n(Γ; z) =
∫
Γ

f (�)
� − z

d�.

So h : ℂ → ℂ is well-defined.
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WTS h : ℂ → ℂ is holomorphic.

Holomorphicity is a local property, so only consider h on open sets covering ℂ.

The set of z ∉ Γ where n(Γ; z) = 0 is open, and z ↦→
∫
Γ

f (�)
� − z

d� is holomorphic there.

Similarly U is open and z ↦→
∫
Γ

g(�, z) d� is holomorphic there, so h is holomorphic.

Consider z in the unbounded component of ℂ \ Γ. Then n(Γ; z) = 0, so h(z) =
∫
Γ

f (�)
�−z d�.

Let M be such that |f (�)| ≤ M for � ∈ Γ and ℓ be the length of Γ.

|h(z)| =
����∫

Γ

f (�)
� − z

d�
���� ≤ ∫

Γ

���� f (�)
� − z

���� |d� | ≤ Mℓ

d(z, Γ) (d(z, Γ) is the distance of z and Γ).

z → ∞ ⇒ d(z, Γ) → ∞ ⇒ h(z) → 0
So h is bounded, by Liouville h is constant, and the constant is zero.
Suppose z ∈ U \ Γ. Then

0 = h(z) =
∫
Γ

f (�) − f (z)
� − z

d� =

∫
Γ

f (�)
� − z

d� − f (z) (2𝜋i)n(Γ; z). □
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Theorem (Cauchy’s theorem (homology version))
Suppose U ⊂ ℂ is open, f : U → ℂ is holomorphic, and Γ is a cycle in U homologous to zero in U.
Then ∫

Γ

f (z) dz = 0.

Proof: Fix z ∈ U \ Γ.

Apply the Cauchy integral formula to � ↦→ (� − z) f (�) at � = z:

0 = n(Γ; z)(z − z)f (z) = 1
2𝜋i

∫
Γ

(� − z) f (�)
� − z

d� =
1

2𝜋i

∫
Γ

f (�) d�. □

Remark: Cauchy integral formula and Cauchy’s theorem are equivalent logically (if you
prove one the other follows).
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Definition
Cycles Γ0 and Γ1 in U ⊂ ℂ are homologous in U if n(Γ0; p) = n(Γ1; p) for all p ∈ ℂ \ U.

Equivalently, Γ0 − Γ1 is homologous to zero in U.

Corollary
Let U ⊂ ℂ be open and f : U → ℂ holomorphic. If two cycles Γ0 and Γ1 in U are homologous in U,
then ∫

Γ0

f (z) dz =

∫
Γ1

f (z) dz.

That is useful for computing integrals:
Given a complicated cycle, find a simple one that is homologous.

E.g. (exercise), any cycle in ℂ \ {0} is homologous to n𝜕𝔻 for some n ∈ ℤ.

Remark: Being “homologous” is an equivalence relation and the set of equivalence classes
of cycles is an abelian group (under the cycle addition, exercise). This group is called the
first homology group of U.



Definition
Cycles Γ0 and Γ1 in U ⊂ ℂ are homologous in U if n(Γ0; p) = n(Γ1; p) for all p ∈ ℂ \ U.

Equivalently, Γ0 − Γ1 is homologous to zero in U.

Corollary
Let U ⊂ ℂ be open and f : U → ℂ holomorphic. If two cycles Γ0 and Γ1 in U are homologous in U,
then ∫

Γ0

f (z) dz =

∫
Γ1

f (z) dz.

That is useful for computing integrals:
Given a complicated cycle, find a simple one that is homologous.

E.g. (exercise), any cycle in ℂ \ {0} is homologous to n𝜕𝔻 for some n ∈ ℤ.

Remark: Being “homologous” is an equivalence relation and the set of equivalence classes
of cycles is an abelian group (under the cycle addition, exercise). This group is called the
first homology group of U.



Definition
Cycles Γ0 and Γ1 in U ⊂ ℂ are homologous in U if n(Γ0; p) = n(Γ1; p) for all p ∈ ℂ \ U.

Equivalently, Γ0 − Γ1 is homologous to zero in U.

Corollary
Let U ⊂ ℂ be open and f : U → ℂ holomorphic. If two cycles Γ0 and Γ1 in U are homologous in U,
then ∫

Γ0

f (z) dz =

∫
Γ1

f (z) dz.

That is useful for computing integrals:
Given a complicated cycle, find a simple one that is homologous.

E.g. (exercise), any cycle in ℂ \ {0} is homologous to n𝜕𝔻 for some n ∈ ℤ.

Remark: Being “homologous” is an equivalence relation and the set of equivalence classes
of cycles is an abelian group (under the cycle addition, exercise). This group is called the
first homology group of U.



Definition
Cycles Γ0 and Γ1 in U ⊂ ℂ are homologous in U if n(Γ0; p) = n(Γ1; p) for all p ∈ ℂ \ U.

Equivalently, Γ0 − Γ1 is homologous to zero in U.

Corollary
Let U ⊂ ℂ be open and f : U → ℂ holomorphic. If two cycles Γ0 and Γ1 in U are homologous in U,
then ∫

Γ0

f (z) dz =

∫
Γ1

f (z) dz.

That is useful for computing integrals:
Given a complicated cycle, find a simple one that is homologous.

E.g. (exercise), any cycle in ℂ \ {0} is homologous to n𝜕𝔻 for some n ∈ ℤ.

Remark: Being “homologous” is an equivalence relation and the set of equivalence classes
of cycles is an abelian group (under the cycle addition, exercise). This group is called the
first homology group of U.



Definition
Cycles Γ0 and Γ1 in U ⊂ ℂ are homologous in U if n(Γ0; p) = n(Γ1; p) for all p ∈ ℂ \ U.

Equivalently, Γ0 − Γ1 is homologous to zero in U.

Corollary
Let U ⊂ ℂ be open and f : U → ℂ holomorphic. If two cycles Γ0 and Γ1 in U are homologous in U,
then ∫

Γ0

f (z) dz =

∫
Γ1

f (z) dz.

That is useful for computing integrals:
Given a complicated cycle, find a simple one that is homologous.

E.g. (exercise), any cycle in ℂ \ {0} is homologous to n𝜕𝔻 for some n ∈ ℤ.

Remark: Being “homologous” is an equivalence relation and the set of equivalence classes
of cycles is an abelian group (under the cycle addition, exercise). This group is called the
first homology group of U.


