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Let U,V ⊂ ℂ be open.

If f : U → V is holomorphic and bĳective and f−1 is holomorphic, then f is called a
biholomorphism, and say U and V are biholomorphic.
(surprisingly, we will later see that f−1 is automatically holomorphic).

If U = V, then f is called an automorphism.
(Remark that the word “automorphism” appears in many different contexts.)

Denote the set of automorphism by Aut(U), which is a group under composition (exercise).

Remark: Traditionally, a biholomorphism is called a conformal mapping and biholomorphic
U and V are said to be conformally equivalent.

Example: The Cayley map C(z) = z−i
z+i takes ℍ = {z ∈ ℂ : Im z > 0} to 𝔻, and has an inverse.

That is, C|ℍ : ℍ → 𝔻 is a biholomorphism.

Example: For any a, b ∈ ℂ, a ≠ 0, the function az + b is an automorphism of ℂ.
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Suppose f is a biholomorphism.

Differentiate f−1 (f (z)) = z to find (f−1)′
(
f (z)

)
f ′(z) = 1.

So f ′(z) ≠ 0 for all z, and if w = f (z), then

(f−1)′(w) = 1
f ′(z) or f ′(z) = 1

(f−1)′(w)
.

Consider a holomorphic f = u + iv. Its real derivative is (as usual z = x + iy)

Df =

[
𝜕u
𝜕x

𝜕u
𝜕y

𝜕v
𝜕x

𝜕v
𝜕y

]
.

Using the Cauchy–Riemann equations, we compute the Jacobian determinant,

det Df = 𝜕u
𝜕x

𝜕v
𝜕y

− 𝜕u
𝜕y

𝜕v
𝜕x

=

(
𝜕u
𝜕x

)2
+
(
𝜕v
𝜕x

)2
=
��f ′(z)��2.

det Df is nonzero (positive) and Df is invertible ⇔ f ′(z) ≠ 0.

Note that we also found that a holomorphic f preserves orientation (positive det Df ).



Suppose f is a biholomorphism.

Differentiate f−1 (f (z)) = z to find (f−1)′
(
f (z)

)
f ′(z) = 1.

So f ′(z) ≠ 0 for all z, and if w = f (z), then

(f−1)′(w) = 1
f ′(z) or f ′(z) = 1

(f−1)′(w)
.

Consider a holomorphic f = u + iv. Its real derivative is (as usual z = x + iy)

Df =

[
𝜕u
𝜕x

𝜕u
𝜕y

𝜕v
𝜕x

𝜕v
𝜕y

]
.

Using the Cauchy–Riemann equations, we compute the Jacobian determinant,

det Df = 𝜕u
𝜕x

𝜕v
𝜕y

− 𝜕u
𝜕y

𝜕v
𝜕x

=

(
𝜕u
𝜕x

)2
+
(
𝜕v
𝜕x

)2
=
��f ′(z)��2.

det Df is nonzero (positive) and Df is invertible ⇔ f ′(z) ≠ 0.

Note that we also found that a holomorphic f preserves orientation (positive det Df ).



Suppose f is a biholomorphism.

Differentiate f−1 (f (z)) = z to find (f−1)′
(
f (z)

)
f ′(z) = 1.

So f ′(z) ≠ 0 for all z,

and if w = f (z), then

(f−1)′(w) = 1
f ′(z) or f ′(z) = 1

(f−1)′(w)
.

Consider a holomorphic f = u + iv. Its real derivative is (as usual z = x + iy)

Df =

[
𝜕u
𝜕x

𝜕u
𝜕y

𝜕v
𝜕x

𝜕v
𝜕y

]
.

Using the Cauchy–Riemann equations, we compute the Jacobian determinant,

det Df = 𝜕u
𝜕x

𝜕v
𝜕y

− 𝜕u
𝜕y

𝜕v
𝜕x

=

(
𝜕u
𝜕x

)2
+
(
𝜕v
𝜕x

)2
=
��f ′(z)��2.

det Df is nonzero (positive) and Df is invertible ⇔ f ′(z) ≠ 0.

Note that we also found that a holomorphic f preserves orientation (positive det Df ).



Suppose f is a biholomorphism.

Differentiate f−1 (f (z)) = z to find (f−1)′
(
f (z)

)
f ′(z) = 1.

So f ′(z) ≠ 0 for all z, and if w = f (z), then

(f−1)′(w) = 1
f ′(z) or f ′(z) = 1

(f−1)′(w)
.

Consider a holomorphic f = u + iv. Its real derivative is (as usual z = x + iy)

Df =

[
𝜕u
𝜕x

𝜕u
𝜕y

𝜕v
𝜕x

𝜕v
𝜕y

]
.

Using the Cauchy–Riemann equations, we compute the Jacobian determinant,

det Df = 𝜕u
𝜕x

𝜕v
𝜕y

− 𝜕u
𝜕y

𝜕v
𝜕x

=

(
𝜕u
𝜕x

)2
+
(
𝜕v
𝜕x

)2
=
��f ′(z)��2.

det Df is nonzero (positive) and Df is invertible ⇔ f ′(z) ≠ 0.

Note that we also found that a holomorphic f preserves orientation (positive det Df ).



Suppose f is a biholomorphism.

Differentiate f−1 (f (z)) = z to find (f−1)′
(
f (z)

)
f ′(z) = 1.

So f ′(z) ≠ 0 for all z, and if w = f (z), then

(f−1)′(w) = 1
f ′(z) or f ′(z) = 1

(f−1)′(w)
.

Consider a holomorphic f = u + iv.

Its real derivative is (as usual z = x + iy)

Df =

[
𝜕u
𝜕x

𝜕u
𝜕y

𝜕v
𝜕x

𝜕v
𝜕y

]
.

Using the Cauchy–Riemann equations, we compute the Jacobian determinant,

det Df = 𝜕u
𝜕x

𝜕v
𝜕y

− 𝜕u
𝜕y

𝜕v
𝜕x

=

(
𝜕u
𝜕x

)2
+
(
𝜕v
𝜕x

)2
=
��f ′(z)��2.

det Df is nonzero (positive) and Df is invertible ⇔ f ′(z) ≠ 0.

Note that we also found that a holomorphic f preserves orientation (positive det Df ).



Suppose f is a biholomorphism.

Differentiate f−1 (f (z)) = z to find (f−1)′
(
f (z)

)
f ′(z) = 1.

So f ′(z) ≠ 0 for all z, and if w = f (z), then

(f−1)′(w) = 1
f ′(z) or f ′(z) = 1

(f−1)′(w)
.

Consider a holomorphic f = u + iv. Its real derivative is (as usual z = x + iy)

Df =

[
𝜕u
𝜕x

𝜕u
𝜕y

𝜕v
𝜕x

𝜕v
𝜕y

]
.

Using the Cauchy–Riemann equations, we compute the Jacobian determinant,

det Df = 𝜕u
𝜕x

𝜕v
𝜕y

− 𝜕u
𝜕y

𝜕v
𝜕x

=

(
𝜕u
𝜕x

)2
+
(
𝜕v
𝜕x

)2
=
��f ′(z)��2.

det Df is nonzero (positive) and Df is invertible ⇔ f ′(z) ≠ 0.

Note that we also found that a holomorphic f preserves orientation (positive det Df ).



Suppose f is a biholomorphism.

Differentiate f−1 (f (z)) = z to find (f−1)′
(
f (z)

)
f ′(z) = 1.

So f ′(z) ≠ 0 for all z, and if w = f (z), then

(f−1)′(w) = 1
f ′(z) or f ′(z) = 1

(f−1)′(w)
.

Consider a holomorphic f = u + iv. Its real derivative is (as usual z = x + iy)

Df =

[
𝜕u
𝜕x

𝜕u
𝜕y

𝜕v
𝜕x

𝜕v
𝜕y

]
.

Using the Cauchy–Riemann equations, we compute the Jacobian determinant,

det Df

=
𝜕u
𝜕x

𝜕v
𝜕y

− 𝜕u
𝜕y

𝜕v
𝜕x

=

(
𝜕u
𝜕x

)2
+
(
𝜕v
𝜕x

)2
=
��f ′(z)��2.

det Df is nonzero (positive) and Df is invertible ⇔ f ′(z) ≠ 0.

Note that we also found that a holomorphic f preserves orientation (positive det Df ).



Suppose f is a biholomorphism.

Differentiate f−1 (f (z)) = z to find (f−1)′
(
f (z)

)
f ′(z) = 1.

So f ′(z) ≠ 0 for all z, and if w = f (z), then

(f−1)′(w) = 1
f ′(z) or f ′(z) = 1

(f−1)′(w)
.

Consider a holomorphic f = u + iv. Its real derivative is (as usual z = x + iy)

Df =

[
𝜕u
𝜕x

𝜕u
𝜕y

𝜕v
𝜕x

𝜕v
𝜕y

]
.

Using the Cauchy–Riemann equations, we compute the Jacobian determinant,

det Df = 𝜕u
𝜕x

𝜕v
𝜕y

− 𝜕u
𝜕y

𝜕v
𝜕x

=

(
𝜕u
𝜕x

)2
+
(
𝜕v
𝜕x

)2
=
��f ′(z)��2.

det Df is nonzero (positive) and Df is invertible ⇔ f ′(z) ≠ 0.

Note that we also found that a holomorphic f preserves orientation (positive det Df ).



Suppose f is a biholomorphism.

Differentiate f−1 (f (z)) = z to find (f−1)′
(
f (z)

)
f ′(z) = 1.

So f ′(z) ≠ 0 for all z, and if w = f (z), then

(f−1)′(w) = 1
f ′(z) or f ′(z) = 1

(f−1)′(w)
.

Consider a holomorphic f = u + iv. Its real derivative is (as usual z = x + iy)

Df =

[
𝜕u
𝜕x

𝜕u
𝜕y

𝜕v
𝜕x

𝜕v
𝜕y

]
.

Using the Cauchy–Riemann equations, we compute the Jacobian determinant,

det Df = 𝜕u
𝜕x

𝜕v
𝜕y

− 𝜕u
𝜕y

𝜕v
𝜕x

=

(
𝜕u
𝜕x

)2
+
(
𝜕v
𝜕x

)2

=
��f ′(z)��2.

det Df is nonzero (positive) and Df is invertible ⇔ f ′(z) ≠ 0.

Note that we also found that a holomorphic f preserves orientation (positive det Df ).



Suppose f is a biholomorphism.

Differentiate f−1 (f (z)) = z to find (f−1)′
(
f (z)

)
f ′(z) = 1.

So f ′(z) ≠ 0 for all z, and if w = f (z), then

(f−1)′(w) = 1
f ′(z) or f ′(z) = 1

(f−1)′(w)
.

Consider a holomorphic f = u + iv. Its real derivative is (as usual z = x + iy)

Df =

[
𝜕u
𝜕x

𝜕u
𝜕y

𝜕v
𝜕x

𝜕v
𝜕y

]
.

Using the Cauchy–Riemann equations, we compute the Jacobian determinant,

det Df = 𝜕u
𝜕x

𝜕v
𝜕y

− 𝜕u
𝜕y

𝜕v
𝜕x

=

(
𝜕u
𝜕x

)2
+
(
𝜕v
𝜕x

)2
=
��f ′(z)��2.

det Df is nonzero (positive) and Df is invertible ⇔ f ′(z) ≠ 0.

Note that we also found that a holomorphic f preserves orientation (positive det Df ).



Suppose f is a biholomorphism.

Differentiate f−1 (f (z)) = z to find (f−1)′
(
f (z)

)
f ′(z) = 1.

So f ′(z) ≠ 0 for all z, and if w = f (z), then

(f−1)′(w) = 1
f ′(z) or f ′(z) = 1

(f−1)′(w)
.

Consider a holomorphic f = u + iv. Its real derivative is (as usual z = x + iy)

Df =

[
𝜕u
𝜕x

𝜕u
𝜕y

𝜕v
𝜕x

𝜕v
𝜕y

]
.

Using the Cauchy–Riemann equations, we compute the Jacobian determinant,

det Df = 𝜕u
𝜕x

𝜕v
𝜕y

− 𝜕u
𝜕y

𝜕v
𝜕x

=

(
𝜕u
𝜕x

)2
+
(
𝜕v
𝜕x

)2
=
��f ′(z)��2.

det Df is nonzero (positive) and Df is invertible ⇔ f ′(z) ≠ 0.

Note that we also found that a holomorphic f preserves orientation (positive det Df ).



Suppose f is a biholomorphism.

Differentiate f−1 (f (z)) = z to find (f−1)′
(
f (z)

)
f ′(z) = 1.

So f ′(z) ≠ 0 for all z, and if w = f (z), then

(f−1)′(w) = 1
f ′(z) or f ′(z) = 1

(f−1)′(w)
.

Consider a holomorphic f = u + iv. Its real derivative is (as usual z = x + iy)

Df =

[
𝜕u
𝜕x

𝜕u
𝜕y

𝜕v
𝜕x

𝜕v
𝜕y

]
.

Using the Cauchy–Riemann equations, we compute the Jacobian determinant,

det Df = 𝜕u
𝜕x

𝜕v
𝜕y

− 𝜕u
𝜕y

𝜕v
𝜕x

=

(
𝜕u
𝜕x

)2
+
(
𝜕v
𝜕x

)2
=
��f ′(z)��2.

det Df is nonzero (positive) and Df is invertible ⇔ f ′(z) ≠ 0.

Note that we also found that a holomorphic f preserves orientation (positive det Df ).



The real inverse function theorem for continuously differentiable functions of ℝ2 to ℝ2

says that if Df is invertible at p, then f takes a neighborhood V of p bĳectively to a
neighborhood f (V) of f (p) and the inverse on that neighborhood is continuously
differentiable with D(f−1)|f (p) = (Df |p)−1.

If a 2 × 2 matrix represents a complex number, its inverse represents the reciprocal.

So in the theorem, if f is holomorphic, then so is f−1. We proved:

Theorem (Inverse function theorem for holomorphic functions)
Suppose U ⊂ ℂ is open, f : U → ℂ is holomorphic, p ∈ U, and f ′(p) ≠ 0. Suppose further that f is
continuously differentiable. Then there exist open sets V,W ⊂ ℂ such that p ∈ V ⊂ U, f (V) = W,
the restriction f |V is injective (one-to-one), and hence a g : W → V exists such that
g(w) = (f |V)−1(w) for all w ∈ W. Furthermore, g is holomorphic and

g′(w) = 1
f ′
(
g(w)

) for all w ∈ W.

Remark: We will prove later a holomorphic f is always continuously differentiable.
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Just because f ′ is never zero doesn’t mean that f is (globally) bĳective.

ez is never zero (so neither is its derivative), but ez = ez+2𝜋i.

But locally we can invert ez and we will obtain (locally) the complex logarithm.

Remark: Locally, there are lots of local biholomorphisms (there are lots of holomorphic
functions whose derivative is nonzero at a point).

However, for a fixed U and V, there are very few biholomorphisms of U and V.

E.g., if f ∈ Aut(𝔻), then f (z) = ei𝜃 z−a
1−āz , if f ∈ Aut(ℂ), then f (z) = az + b.

And comparatively, 𝔻 and ℂ have more automorphisms than most.

E.g., a disc minus three generically placed points only has the identity automorphism.

(Although we don’t yet have enough machinery to prove these statements.)
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