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We have the tools to make three fundamental results pop out with little work:

1. The “triangle inequality” on the integral formula for the coefficients of the power
series gives estimates on their size: Cauchy’s estimates.

2. Cauchy’s estimates imply Liouville’s theorem: Bounded entire (defined on all of ℂ)
holomorphic functions are constant.

3. Liouville’s theorem gives the fundamental theorem of algebra: Every nonconstant
polynomial has a root.
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For a set K, denote the supremum norm or uniform norm of a function:

∥f ∥K
def
= sup

z∈K
|f (z)|.

Theorem (Cauchy estimates)
Let U ⊂ ℂ be open, f : U → ℂ be holomorphic, and Δr(p) ⊂ U be a closed disc. Expand
f (z) = ∑

cn(z − p)n. Then for all n,

|cn | =
���� f (n)(p)n!

���� ≤ ∥f ∥𝜕Δr(p)
rn .

In other words, the sequence
{
|cn |rn} is bounded by ∥f ∥𝜕Δr(p).

Proof:

|cn | =
����� 1
2𝜋i

∫
𝜕Δr(p)

f (𝜁)
(𝜁 − p)n+1 d𝜁

����� ≤ 1
2𝜋

∫
𝜕Δr(p)

∥f ∥𝜕Δr(p)

rn+1 |d𝜁 | =
∥f ∥𝜕Δr(p)

rn . □
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A better estimate than

|cn | =
���� f (n)(p)n!

���� ≤ ∥f ∥𝜕Δr(p)
rn

is not possible.

Consider
f (z) = M

rn (z − p)n.

Then
M = ∥f ∥𝜕Δr(p).

And
|cn | =

M
rn .
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Definition
A holomorphic f : ℂ → ℂ is called an entire holomorphic function or perhaps just entire.

Examples: Polynomials, ez, sin z, cos z, but not 1
z .

Theorem (Liouville)
If f is entire and bounded, then f is constant.

Proof: Suppose f is entire and |f (z)| ≤ M for all z ∈ ℂ. Expand around the origin:

f (z) =
∞∑

n=0
cnzn.

f is holomorphic on a disc of arbitrary radius ⇒ the Cauchy estimates say

|cn | ≤
∥f ∥𝜕Δr(p)

rn ≤ M
rn for all r > 0.

Letting r → ∞ shows that cn = 0 for n ≥ 1. In other words, f (z) = c0 for all z. □
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Theorem (Fundamental theorem of algebra)
If P(z) is a nonconstant polynomial, then P has a root.

Proof: If P(z) does not have a root, then R(z) = 1
P(z) is an entire holomorphic function.

Suppose P(z) is nonconstant. Then (via an exercise)

lim
z→∞

P(z) = ∞ ⇒ lim
z→∞

R(z) = 0.

So R(z) is bounded.

Liouville says that R(z) and hence P(z) must be constant, a contradiction. □
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