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Terminology: zeros/poles counted with multiplicity: f(z) = 22(z — 1)° has the zeros
21,22,23,24,25 = 0/ 0/ 1/ 1/ 1.



Terminology: zeros/poles counted with multiplicity: f(z) = 22(z — 1)° has the zeros
21,22,23,24,25 = Or Or 1/ 1/ 1.

Theorem (Argument principle)

Suppose U c C is open and I is a cycle in U homologous to zero in U. Suppose f: U — C isa
meromorphic function with no zeros or poles on I'. Let z1, . . ., z, denote the zeros of f counted with
multiplicity, and let p1, . .., py denote the poles of f counted with multiplicity. Then
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Furthermore, if h: U — C is holomorphic, then

n

’ 4
1 /r h(z)J; ((ZZ)) dz= > n(Tzh(z) — Y n(T:ph(py).

271
k=1 k=1




Terminology: zeros/poles counted with multiplicity: f(z) = 22(z — 1)° has the zeros
21,22,23,24,25 = Or 0/ 1/ 1/ 1.

Theorem (Argument principle)

Suppose U c C is open and I is a cycle in U homologous to zero in U. Suppose f: U — C isa
meromorphic function with no zeros or poles on I'. Let z1, . . ., z, denote the zeros of f counted with
multiplicity, and let p1, . .., py denote the poles of f counted with multiplicity. Then

f,(z) n 14 ‘
2m e dz = kz; n(T;zx) — kz:; n(T; pr).

Furthermore, if h: U — C is holomorphic, then

n

’ 4
5 / (z )f &) J dz = Zn(F 2h(z) — > (T p)h(py)-

k=1

# of poles/zero normally countable, but can assume finite above.



Suppose n(I';z) =1or0forallz € U.
The “inside of I'” are the points where n(I';z) = 1.
If there are n zeros and £ poles (counting multiplicity) inside I, then
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The integral /1" f(( 2 gz gives i times the change in argument of f as we traverse I', since the

“antiderivative” of J}((Z)) islogf(z) = log|f(z)| +iargf(z).



Suppose n(I';z) =1or0forallz € U.
The “inside of I'” are the points where n(I';z) = 1.
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The integral /1" f(( 2 gz gives i times the change in argument of f as we traverse I', since the

“antiderivative” of J}((Z)) islogf(z) = log|f(z)| +iargf(z).

Another interpretation:
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Proof: h(z)ff%) has isolated singularities at the zeros and poles of f.
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Consider a zero of f of multiplicity m or pole of order —m.
WLOG suppose it is the origin.



Proof: h(z)f ((zz)) has isolated singularities at the zeros and poles of f. Let S be the set of

zeros and poles of f. By residue theorem
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Consider a zero of f of multiplicity m or pole of order —m.
WLOG suppose it is the origin.

Write f(z) = z"F(z) where F(0) # 0 and h(z) = h(0) + zH(z).



Proof: h(z)f ((zz)) has isolated singularities at the zeros and poles of f. Let S be the set of

zeros and poles of f. By residue theorem
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Consider a zero of f of multiplicity m or pole of order —m.
WLOG suppose it is the origin.

Write f(z) = z"F(z) where F(0) # 0 and h(z) = h(0) + zH(z).
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Proof: h(z)@ has isolated singularities at the zeros and poles of f. Let S be the set of
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Consider a zero of f of multiplicity m or pole of order —m.
WLOG suppose it is the origin.

Write f(z) = z"F(z) where F(0) # 0 and h(z) = h(0) + zH(z).

2" 1F(z) +2"F(@) _ h(O) +h(O)PI(Z)
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Write f(z) = 2" F(z) where F(0) # 0 and h(z) = h(0) + zH(z).
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mF(z) + zF'(z)

h(O) + h(0) @)

+ H(z)
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Everything except m h(0)? is holomorphic. So

Res (h];;O) =mh(0) O



Application: Locate zeros of holomorphic f (e.g. polynomials) by computing
(even numerically)
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Application: Locate zeros of holomorphic f (e.g. polynomials) by computing
(even numerically)
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Related application:

If zq,...,z, are zeros of f inside I (going around them once), then
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Application: Locate zeros of holomorphic f (e.g. polynomials) by computing
(even numerically)
re .,
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Related application:
If zq,...,z, are zeros of f inside I (going around them once), then

If there is one simple zero z( of f within I', then
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