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If p € Sis a pole, set f(p) = oo to get a function
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The extended f is continuous.
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A meromorphic function is “a holomorphic function f: U — Co.”

Technicality: Should we consider the constant co a meromorphic function?
In this course, we do not.

To emphasize we will often say “Let f: U — Co be meromorphic.”
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One could define functions on U C C, (like we did with LFTs).
Ifooel, f:U— Cs isholomorphic at o if f(1/z) is holomorphic at 0.
So an LFT is a biholomorphic mapping Co — Cc.

Exercise: Show that a holomorphic f: C., — Cq has at most finitely many poles and
finitely many zeros.

Exercise: Show that a holomorphic f: Coo — C is either constant or onto.

Exercise: Show that a holomorphic f: C — C is a rational function (a polynomial
divided by a polynomial).

Exercise: Show that an injective holomorphic f: Coo — Co is an LFT.



