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Last time we proved holomorphic functions are analytic.

Let us restate a theorem that we proved for analytic functions for holomorphic functions.

Theorem
Let U ⊂ ℂ be open and f : U → ℂ holomorphic. Then f is infinitely complex differentiable.
In particular, f ′ is holomorphic.

Nothing like this is true for real differentiable functions.

Any continuous g : (a, b) → ℝ is the derivative of a real differentiable function
E.g., f (x) =

∫ x
c g(t) dt for c ∈ (a, b).

Even worse, the real derivative could even be discontinuous.
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In complex analysis, we can differentiate by integrating.

Theorem (Cauchy integral formula for derivatives)
Suppose U ⊂ ℂ is open, f : U → ℂ is holomorphic, Δr(p) ⊂ U. Then for all k ∈ ℕ,

f (k)(z) = k!
2𝜋i

∫
𝜕Δr(p)

f (𝜁)
(𝜁 − z)k+1 d𝜁 for all z ∈ Δr(p).

Proof: All complex derivatives exist.
We can compute them by the Wirtinger operator 𝜕

𝜕z = 1
2

(
𝜕
𝜕x − i 𝜕

𝜕y

)
, (where z = x + iy).

Suppose conclusion holds for some k (Cauchy formula is k = 0) and fix some z ∈ Δr(p).

f (k+1)(z) = 𝜕

𝜕z
[
f (k)(z)

]
=

𝜕

𝜕z

[
k!

2𝜋i

∫
𝜕Δr(p)

f (𝜁)
(𝜁 − z)k+1 d𝜁

]
=

k!
2𝜋i

∫
𝜕Δr(p)

f (𝜁) 𝜕

𝜕z

[
1

(𝜁 − z)k+1

]
d𝜁 =

(k + 1)!
2𝜋i

∫
𝜕Δr(p)

f (𝜁)
(𝜁 − z)k+2 d𝜁.

We passed x and y derivatives under the integral sign (Leibniz rule), which is valid as
the x and y derivatives of f (𝜁)

(𝜁−z)k+1 are continuous functions of (z, 𝜁) ∈ Δr(p) × 𝜕Δr(p). □
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Suppose conclusion holds for some k (Cauchy formula is k = 0) and fix some z ∈ Δr(p).

f (k+1)(z) = 𝜕

𝜕z
[
f (k)(z)

]
=

𝜕

𝜕z

[
k!

2𝜋i

∫
𝜕Δr(p)

f (𝜁)
(𝜁 − z)k+1 d𝜁

]
=

k!
2𝜋i

∫
𝜕Δr(p)

f (𝜁) 𝜕

𝜕z

[
1

(𝜁 − z)k+1

]
d𝜁 =

(k + 1)!
2𝜋i

∫
𝜕Δr(p)

f (𝜁)
(𝜁 − z)k+2 d𝜁.

We passed x and y derivatives under the integral sign (Leibniz rule), which is valid as
the x and y derivatives of f (𝜁)

(𝜁−z)k+1 are continuous functions of (z, 𝜁) ∈ Δr(p) × 𝜕Δr(p). □



As an aside we mention a result that will be needed later.

Exercise: Suppose f (z, t) is a continuous function of (z, t) ∈ U × (a, b), where U ⊂ ℂ is open,
and for every fixed t ∈ (a, b), the function z ↦→ f (z, t) is holomorphic.
Prove that 𝜕f

𝜕z is a continuous function of U × (a, b).
Then show 𝜕f

𝜕x and 𝜕f
𝜕y are continuous.

The above is not true for real differentiable functions:

Let f (x, t) = t sin(x/t) for t ≠ 0 and f (x, 0) = 0.

Then (exercise) f is continuous on ℝ2 and x ↦→ f (x, t) is differentiable for each fixed t.

But 𝜕f
𝜕x is not continuous as a function of both x and t.
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That f ′ is holomorphic gives us a very useful converse to Cauchy.

Theorem (Morera)
Let U ⊂ ℂ be open and f : U → ℂ continuous. Suppose that∫

𝜕T
f (z) dz = 0

for every triangle such that T ⊂ U. Then f is holomorphic.

It is far easier to integrate a continuous f than to show that f ′ exists.

Proof: Holomorphicity is local, so assume U is a disc.

A disc is star-like, and the hypothesis is precisely what we used to show that f has a
primitive F in a star-like U.

f = F′ in U, and complex derivatives are holomorphic. □



That f ′ is holomorphic gives us a very useful converse to Cauchy.

Theorem (Morera)
Let U ⊂ ℂ be open and f : U → ℂ continuous. Suppose that∫

𝜕T
f (z) dz = 0

for every triangle such that T ⊂ U.

Then f is holomorphic.

It is far easier to integrate a continuous f than to show that f ′ exists.

Proof: Holomorphicity is local, so assume U is a disc.

A disc is star-like, and the hypothesis is precisely what we used to show that f has a
primitive F in a star-like U.

f = F′ in U, and complex derivatives are holomorphic. □
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That f ′ is holomorphic gives us a very useful converse to Cauchy.
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The reduction to a disc is necessary:
E.g., 1/z does not have a primitive in U = ℂ \ {0},
but does satisfy hypotheses of Morera.

Typical application of Morera is something like the following exercise:

Exercise: Show that if f : ℂ → ℂ is continuous and holomorphic on ℂ \ℝ, then f is
holomorphic everywhere.
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