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1
z

has an isolated singularity at z = 0.

It is a pole of order 1.

The Laurent series at z = 0 is just 1/z,
and all coefficients of order less than −1 are zero.
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OK, we could make this more complicated:
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Again, pole of order 1 at z = 0,
and all coefficients in the series of order less than −1 are zero.
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Or even more complicated:
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A pole of order 3,
and all coefficients in the series of order less than −3 are zero.
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has an essential singularity at z = 0,
and has nonzero coefficients of all negative orders.



It is not difficult to prove the general statement:

Proposition
Suppose f : Δr(p) \ {p} → ℂ is holomorphic, and

f (z) =
∞∑

n=−∞
cn(z − p)n

is the corresponding Laurent series.

The singularity at p is
(i) removable if and only if cn = 0 for all n < 0,

(ii) a pole of order k ∈ ℕ if and only if cn = 0 for all n < −k and c−k ≠ 0,
(iii) essential if and only if cn ≠ 0 for infinitely many negative n.

The proof is left as an exercise.
Hint: Laurent series is unique, and for a removable singularity equals the power series.
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Definition
At an isolated singularity, the negative part of the Laurent series

−1∑
n=−∞

cn(z − p)n

is called the principal part.

Observation: If P(z) is the principal part of f (z) at p, then f (z) − P(z) has a removable
singularity at p.
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The example e1/z motivates the following concept.

Given an entire f : ℂ → ℂ, we talk about its singularity at infinity.

ℂ ⊂ ℂ∞ and 1/z is a self mapping of ℂ∞ that swaps ∞ and 0.

z ↦→ f (1/z) has an isolated singularity at 0, and that’s the “singularity of f at ∞.”

ez has an essential singularity at infinity,
because e1/z has an essential singularity at 0.
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Exercise: Prove that if f has a pole at the origin and g has an essential singularity at the
origin, then f + g has an essential singularity at the origin.

Exercise: If f has a pole at p, then ef (z) has an essential singularity at p.
Hint: First do it for a simple pole.

Exercise: Show that an entire holomorphic f : ℂ → ℂ has a pole at infinity if and only if it
is a nonconstant polynomial. The order of the pole is the degree of the polynomial.

Exercise: Show that if f : ℂ → ℂ is an automorphism, then f (z) = az + b for some constants
a ≠ 0 and b. Hint: Show that f has a simple pole at infinity.
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