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Let Γ be a cycle, and p ∉ Γ. Define

n(Γ; p) def
=

1
2𝜋i

∫
Γ

1
z − p

dz.

n(Γ; p) is called the winding number of Γ around p, or the index of Γ with respect to p.

It is the number of times Γ winds around p in the counterclockwise direction.

Example: 𝛾(t) = eit for t ∈ [0, 2𝜋] goes once around 0 in the counterclockwise direction,

1
2𝜋i

∫
𝛾

1
z

dz = 1.

Example: 𝛾(t) = ei2t for t ∈ [0, 2𝜋] goes twice around 0,

1
2𝜋i

∫
𝛾

1
z

dz = 2.

Example: 𝛾(t) = e−it for t ∈ [0, 2𝜋] goes once around in the clockwise direction,

1
2𝜋i

∫
𝛾

1
z

dz = −1.
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Proposition
Suppose Γ is a cycle and p ∉ Γ. Then n(Γ; p) is an integer.

Idea: Follow a branch of log, then the argument differs by an integer multiple of 2𝜋.

Proof: Γ is a “sum” of closed paths, so WLOG consider a closed piecewise-C1 path
𝛾 : [0, 1] → ℂ.

𝛾 can be covered by finitely many discs D1 , . . . ,Dn none of which contain p.

(cover the whole closed curve, of course)
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The discs D1 , . . . ,Dn cover 𝛾.

And the discs can be chosen (exercise) so that there is a partition
0 = t0 < t1 < t2 < · · · < tn = 1, where 𝛾

(
[tj−1 , tj]

)
⊂ Dj for every j.

Each Dj is star-like and p ∉ Dj ⇒ ∃ a branch Lj of log(z − p) on each Dj, such that

Lj
(
𝛾(tj)

)
= Lj+1

(
𝛾(tj)

)
(L1 is an arbitrary branch).

Call z0 = 𝛾(0) = 𝛾(1). So

n(𝛾; p) = 1
2𝜋i

∫
𝛾

1
z − p

dz =
1

2𝜋i

∫ 1

0

𝛾′(t)
𝛾(t) − p

dt = 1
2𝜋i

n∑
j=1

∫ tj

tj−1

𝛾′(t)
𝛾(t) − p

dt

=
1

2𝜋i

n∑
j=1

Lj
(
𝛾(tj)

)
− Lj

(
𝛾(tj−1)

)
=

1
2𝜋i

(
Ln(z0) − L1(z0)

)
.

Ln and L1 are branches of log,
each is log|z0 | + i arg z0 for some value of arg,
their difference is 2𝜋ki for some k ∈ ℤ. □
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n(𝛾; p) = 1
2𝜋i

∫
𝛾

1
z − p

dz =
1

2𝜋i

∫ 1

0

𝛾′(t)
𝛾(t) − p

dt = 1
2𝜋i

n∑
j=1

∫ tj

tj−1

𝛾′(t)
𝛾(t) − p

dt

=
1

2𝜋i

n∑
j=1

Lj
(
𝛾(tj)

)
− Lj

(
𝛾(tj−1)

)
=

1
2𝜋i

(
Ln(z0) − L1(z0)

)
.

Ln and L1 are branches of log,
each is log|z0 | + i arg z0 for some value of arg,
their difference is 2𝜋ki for some k ∈ ℤ. □



Proposition
Given a cycle Γ, the function z ↦→ n(Γ; z) is constant on the topological components of ℂ \ Γ.

Furthermore, n(Γ; z) = 0 for z on the unbounded component of ℂ \ Γ.

As Γ is compact, is a unique unbounded component of ℂ \ Γ.

Example:

Γ

unbounded component

n(Γ; z) = 1

n(Γ; z) = 0

n(Γ; z) = −2

n(Γ; z) = −1
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Proof: We start by showing that p ↦→ n(Γ; p) = 1
2𝜋i

∫
Γ

1
z − p

dz is continuous on ℂ \ Γ.

Fix p0 ∈ ℂ \ Γ, and let d = d(p0 , Γ) be the distance from p0 to Γ (d > 0 as Γ is compact).

If p ∈ Δd/2(p0), then |z − p| ≥ d/2 for z ∈ Γ.

Let ℓ =
∫
Γ
|dz| (length of Γ). Then

|n(Γ; p0) − n(Γ; p)| =
���� 1
2𝜋i

∫
Γ

p0 − p
(z − p0)(z − p) dz

���� ≤ 1
2𝜋

∫
Γ

|p0 − p|
|z − p0 | |z − p| |dz| ≤ ℓ

𝜋d2 |p0 − p|.

So, p ↦→ n(Γ; p) is a continuous.

Being continuous and integer-valued, it is constant on every component of ℂ \ Γ.

For p ∈ ℂ \ Γ,

|n(Γ; p)| ≤ 1
2𝜋

∫
Γ

1
|z − p| |dz| ≤ 1

2𝜋
ℓ

d(p, Γ) .

On the unbounded component, there are p with arbitrarily large d(p, Γ).

So n(Γ; p) = 0 on this component. □
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An exercise (direct computation) which we will often use is:

Exercise:

n
(
𝜕Δr(p); z

)
= 0 if z ∉ Δr(p), and

n
(
𝜕Δr(p); z

)
= 1 if z ∈ Δr(p).

Exercise: Compute the winding numbers in an “annulus“:

Suppose 0 < r1 < r2 < ∞ and Γ = 𝜕Δr2(p) − 𝜕Δr1(p).

Then

n(Γ; z) = 0 if |z − p| < r1,

n(Γ; z) = 1 if r1 < |z − p| < r2,

n(Γ; z) = 0 if r2 < |z − p|.
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