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There is a whole list of conditions equivalent to being simply connected for domains in ℂ.

Proposition
Let U ⊂ ℂ be a domain. The following are equivalent:

(i) U is simply connected (in the homology sense).

(ii) Every holomorphic f : U → ℂ has a primitive.

(iii) For every nowhere zero holomorphic f : U → ℂ there exists a holomorphic g : U → ℂ such
that eg(z) = f (z).

(iv) 1
z − p

has a primitive in U for every p ∈ ℂ \ U.

(v) For every holomorphic f : U → ℂ and every cycle Γ in U,
∫
Γ

f (z) dz = 0.

(vi) For every p ∈ ℂ \ U and every cycle Γ in U,
∫
Γ

1
z − p

dz = 0.



There is a whole list of conditions equivalent to being simply connected for domains in ℂ.

Proposition
Let U ⊂ ℂ be a domain. The following are equivalent:

(i) U is simply connected (in the homology sense).

(ii) Every holomorphic f : U → ℂ has a primitive.

(iii) For every nowhere zero holomorphic f : U → ℂ there exists a holomorphic g : U → ℂ such
that eg(z) = f (z).

(iv) 1
z − p

has a primitive in U for every p ∈ ℂ \ U.

(v) For every holomorphic f : U → ℂ and every cycle Γ in U,
∫
Γ

f (z) dz = 0.

(vi) For every p ∈ ℂ \ U and every cycle Γ in U,
∫
Γ

1
z − p

dz = 0.



There is a whole list of conditions equivalent to being simply connected for domains in ℂ.

Proposition
Let U ⊂ ℂ be a domain. The following are equivalent:

(i) U is simply connected (in the homology sense).

(ii) Every holomorphic f : U → ℂ has a primitive.

(iii) For every nowhere zero holomorphic f : U → ℂ there exists a holomorphic g : U → ℂ such
that eg(z) = f (z).

(iv) 1
z − p

has a primitive in U for every p ∈ ℂ \ U.

(v) For every holomorphic f : U → ℂ and every cycle Γ in U,
∫
Γ

f (z) dz = 0.

(vi) For every p ∈ ℂ \ U and every cycle Γ in U,
∫
Γ

1
z − p

dz = 0.



There is a whole list of conditions equivalent to being simply connected for domains in ℂ.

Proposition
Let U ⊂ ℂ be a domain. The following are equivalent:

(i) U is simply connected (in the homology sense).

(ii) Every holomorphic f : U → ℂ has a primitive.

(iii) For every nowhere zero holomorphic f : U → ℂ there exists a holomorphic g : U → ℂ such
that eg(z) = f (z).

(iv) 1
z − p

has a primitive in U for every p ∈ ℂ \ U.

(v) For every holomorphic f : U → ℂ and every cycle Γ in U,
∫
Γ

f (z) dz = 0.

(vi) For every p ∈ ℂ \ U and every cycle Γ in U,
∫
Γ

1
z − p

dz = 0.



There is a whole list of conditions equivalent to being simply connected for domains in ℂ.

Proposition
Let U ⊂ ℂ be a domain. The following are equivalent:

(i) U is simply connected (in the homology sense).

(ii) Every holomorphic f : U → ℂ has a primitive.

(iii) For every nowhere zero holomorphic f : U → ℂ there exists a holomorphic g : U → ℂ such
that eg(z) = f (z).

(iv) 1
z − p

has a primitive in U for every p ∈ ℂ \ U.

(v) For every holomorphic f : U → ℂ and every cycle Γ in U,
∫
Γ

f (z) dz = 0.

(vi) For every p ∈ ℂ \ U and every cycle Γ in U,
∫
Γ

1
z − p

dz = 0.



There is a whole list of conditions equivalent to being simply connected for domains in ℂ.

Proposition
Let U ⊂ ℂ be a domain. The following are equivalent:

(i) U is simply connected (in the homology sense).

(ii) Every holomorphic f : U → ℂ has a primitive.

(iii) For every nowhere zero holomorphic f : U → ℂ there exists a holomorphic g : U → ℂ such
that eg(z) = f (z).

(iv) 1
z − p

has a primitive in U for every p ∈ ℂ \ U.

(v) For every holomorphic f : U → ℂ and every cycle Γ in U,
∫
Γ

f (z) dz = 0.

(vi) For every p ∈ ℂ \ U and every cycle Γ in U,
∫
Γ

1
z − p

dz = 0.



There is a whole list of conditions equivalent to being simply connected for domains in ℂ.

Proposition
Let U ⊂ ℂ be a domain. The following are equivalent:

(i) U is simply connected (in the homology sense).

(ii) Every holomorphic f : U → ℂ has a primitive.

(iii) For every nowhere zero holomorphic f : U → ℂ there exists a holomorphic g : U → ℂ such
that eg(z) = f (z).

(iv) 1
z − p

has a primitive in U for every p ∈ ℂ \ U.

(v) For every holomorphic f : U → ℂ and every cycle Γ in U,
∫
Γ

f (z) dz = 0.

(vi) For every p ∈ ℂ \ U and every cycle Γ in U,
∫
Γ

1
z − p

dz = 0.



Proof: We just proved (i) (simply connected) ⇒ (ii) (existence of primitives), and

then we proved (ii) ⇒ (iii) (existence of logs).
Suppose (iii).
For p ∈ ℂ \ U, find a g such that eg(z) = z − p.

1 =
d
dz [z − p] =

d
dz

[
eg(z)

]
= eg(z)g′(z) = (z − p)g′(z).

So (iv) holds ( 1
z−p has a primitive).

By Cauchy’s theorem for derivatives, (iv) implies
∫
Γ

1
z − p

dz = 0 ∀p ∈ ℂ \ U, so (vi) holds.

As n(Γ; p) = 1
2𝜋i

∫
Γ

1
z − p

dz, (vi) is a restatement of (i).

By Cauchy’s theorem for derivatives, (ii) ⇒ (v) (Cauchy in U).
(v) ⇒ (vi) is immediate.

We proved

(ii) (iii)

(i) (v) (iv)

(vi)

□
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Remark: The existence of roots can also be on the list, but it will be easier to prove later.

Another criterion that can be put on the list is the following
(although we’ll only prove one direction right now).

Proposition
Let U ⊂ ℂ be a domain. If ℂ∞ \ U is connected, then U is simply connected.

Proof: Take S = ℂ∞ \ U and let Γ be a cycle in U.

𝜑(z) = n(Γ; z) is continuous on ℂ \ Γ ⇒ 𝜑 is continuous on S \ {∞}.

On the unbounded component of ℂ \ Γ, we have 𝜑 = 0, so 𝜑 = 0 in a neighborhood of ∞.

Set 𝜑(∞) = 0 to make a continuous function on ℂ∞ \ Γ (hence on S).

S is contained in a single component of ℂ∞ \ Γ (S is connected) ⇒ so 𝜑 |S is constant.

𝜑(∞) = 0, ∞ ∈ S ⇒ 𝜑 |S ≡ 0 ⇒ U is simply connected. □

Remark: It is important to use ℂ∞ and not ℂ: If U = ℂ \ {0} (not simply connected), then
ℂ \ U = {0} is connected, but ℂ∞ \ U = {0,∞} is not connected.
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Exercise: Let U1 ,U2 ⊂ ℂ be two simply connected domains.

1) U1 ∪ U2 is not necessarily simply connected.

2) If U1 ∩ U2 is nonempty and connected, then U1 ∪ U2 is simply connected.
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