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An LFT, %, can be viewed as a 2 X 2 complex matrix.

We need to view the Riemann sphere as the so-called (one-dimensional) complex
projective space.

Define the equivalence relation ~ on C2 \ {0} by u ~ v & u = Av for some A € C. Define
cp! N0},

CP! is the set of “complex lines through the origin” in C?,
or the set of one-dimensional vector subspaces of C2.
Denote by [z : w] € CP! the equivalence class containing (z, w) € C? \ {0}.

Define the bijection W: Co, — CP! as

‘y(z)z{[z:l] %fzeC,
[1:0] ifz=co.
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We claim an LFT corrseponds to an invertible 2 X 2 matrix:

a b
f(z) = <—> M:[C d}'

An invertible M takes 1-dim subspaces to 1-dim subspaces, ad # bc means M is invertible.
Forz e C\ {—d/c} (orzeCifc=0)

az+b
cz+d’

Wof() =

1} =[az+b:cz+d].
When z = —d/c, thencz +d =0, and W o f(z) = W(c0) =[1:0] = [az + b : cz + d] as well.
Ifw # 0, then [z : w] = [#/w : 1]. So

\I’ofo\y_l([z:w]):‘l’of(g) :[a%+b:c%+d] = [az + bw : cz + dw].

The same equality holds if w = 0.

AsM[ ] =[%*%], the function f corresponds to the linear map v — Mo on C2.
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Note that any scalar multiple of M gives the same f.
An invertible M is a map from C? \ {0} to C2\ {0}.
Let : C?\ {0} — CP! be the map 7((z, w)) = [z : w].

We have the commutative diagram:

C2\ {0} X5 2\ {0}

oL
cpt L2, cpt

A ol

Co — Co
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The inverse of an LFT is an LFT, simply invert the matrix.

The formula M1 = dei i [ & -] gives a handy formula for the inverse of an LFT. You can

also just forget about dividing by the determinant since everything is up to a multiple.

So LFTs form a group under composition, the Mdbius group.

The group is generated by T,, D,, and I fora € C.
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z—1
Clz) = —.
(2) zZ+1
This map takes H = {z € C : Imz > 0} to D.
Why? C(z) is in the unit disc if
Z—_l, = u, in other words if lz+i] > |z—1.
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