
Cultivating Complex Analysis:
Harmonic functions

Identity and the maximum principle (7.1.2)

Jiří Lebl

Departemento pri Matematiko de Oklahoma Ŝtata Universitato



A zero set of a harmonic f can have limit points: E.g., Re z. But no open sets.

Theorem (Identity)
Let U ⊂ ℂ be a domain and f : U → ℝ a harmonic function. Suppose V ⊂ U is a nonempty open
subset and f = 0 on V. Then f ≡ 0.

Proof: Let Zf = f−1(0). Let Z be the closure of the interior of Zf (subspace topology on U).

Suppose Z is nonempty and p ∈ Z.
If Δr(p) ⊂ U, f is zero on some open subset of Δr(p).

∃ a holomorphic h : Δr(p) → ℂ such that f = Re h on Δr(p).
⇒ h is holomorphic and purely imaginary on an open subset of Δr(p).
⇒ h is constant on an open subset of Δr(p).
⇒ h is constant on Δr(p).
⇒ f is constant on Δr(p).
⇒ f is zero on Δr(p).
⇒ Z is open.

Z is also closed and U is connected ⇒ Z = U. □



A zero set of a harmonic f can have limit points: E.g., Re z. But no open sets.

Theorem (Identity)
Let U ⊂ ℂ be a domain and f : U → ℝ a harmonic function. Suppose V ⊂ U is a nonempty open
subset and f = 0 on V. Then f ≡ 0.

Proof: Let Zf = f−1(0). Let Z be the closure of the interior of Zf (subspace topology on U).

Suppose Z is nonempty and p ∈ Z.
If Δr(p) ⊂ U, f is zero on some open subset of Δr(p).

∃ a holomorphic h : Δr(p) → ℂ such that f = Re h on Δr(p).
⇒ h is holomorphic and purely imaginary on an open subset of Δr(p).
⇒ h is constant on an open subset of Δr(p).
⇒ h is constant on Δr(p).
⇒ f is constant on Δr(p).
⇒ f is zero on Δr(p).
⇒ Z is open.

Z is also closed and U is connected ⇒ Z = U. □



A zero set of a harmonic f can have limit points: E.g., Re z. But no open sets.

Theorem (Identity)
Let U ⊂ ℂ be a domain and f : U → ℝ a harmonic function. Suppose V ⊂ U is a nonempty open
subset and f = 0 on V. Then f ≡ 0.

Proof: Let Zf = f−1(0).

Let Z be the closure of the interior of Zf (subspace topology on U).

Suppose Z is nonempty and p ∈ Z.
If Δr(p) ⊂ U, f is zero on some open subset of Δr(p).

∃ a holomorphic h : Δr(p) → ℂ such that f = Re h on Δr(p).
⇒ h is holomorphic and purely imaginary on an open subset of Δr(p).
⇒ h is constant on an open subset of Δr(p).
⇒ h is constant on Δr(p).
⇒ f is constant on Δr(p).
⇒ f is zero on Δr(p).
⇒ Z is open.

Z is also closed and U is connected ⇒ Z = U. □



A zero set of a harmonic f can have limit points: E.g., Re z. But no open sets.

Theorem (Identity)
Let U ⊂ ℂ be a domain and f : U → ℝ a harmonic function. Suppose V ⊂ U is a nonempty open
subset and f = 0 on V. Then f ≡ 0.

Proof: Let Zf = f−1(0). Let Z be the closure of the interior of Zf (subspace topology on U).

Suppose Z is nonempty and p ∈ Z.
If Δr(p) ⊂ U, f is zero on some open subset of Δr(p).

∃ a holomorphic h : Δr(p) → ℂ such that f = Re h on Δr(p).
⇒ h is holomorphic and purely imaginary on an open subset of Δr(p).
⇒ h is constant on an open subset of Δr(p).
⇒ h is constant on Δr(p).
⇒ f is constant on Δr(p).
⇒ f is zero on Δr(p).
⇒ Z is open.

Z is also closed and U is connected ⇒ Z = U. □



A zero set of a harmonic f can have limit points: E.g., Re z. But no open sets.

Theorem (Identity)
Let U ⊂ ℂ be a domain and f : U → ℝ a harmonic function. Suppose V ⊂ U is a nonempty open
subset and f = 0 on V. Then f ≡ 0.

Proof: Let Zf = f−1(0). Let Z be the closure of the interior of Zf (subspace topology on U).

Suppose Z is nonempty and p ∈ Z.

If Δr(p) ⊂ U, f is zero on some open subset of Δr(p).

∃ a holomorphic h : Δr(p) → ℂ such that f = Re h on Δr(p).
⇒ h is holomorphic and purely imaginary on an open subset of Δr(p).
⇒ h is constant on an open subset of Δr(p).
⇒ h is constant on Δr(p).
⇒ f is constant on Δr(p).
⇒ f is zero on Δr(p).
⇒ Z is open.

Z is also closed and U is connected ⇒ Z = U. □



A zero set of a harmonic f can have limit points: E.g., Re z. But no open sets.

Theorem (Identity)
Let U ⊂ ℂ be a domain and f : U → ℝ a harmonic function. Suppose V ⊂ U is a nonempty open
subset and f = 0 on V. Then f ≡ 0.

Proof: Let Zf = f−1(0). Let Z be the closure of the interior of Zf (subspace topology on U).

Suppose Z is nonempty and p ∈ Z.
If Δr(p) ⊂ U, f is zero on some open subset of Δr(p).

∃ a holomorphic h : Δr(p) → ℂ such that f = Re h on Δr(p).
⇒ h is holomorphic and purely imaginary on an open subset of Δr(p).
⇒ h is constant on an open subset of Δr(p).
⇒ h is constant on Δr(p).
⇒ f is constant on Δr(p).
⇒ f is zero on Δr(p).
⇒ Z is open.

Z is also closed and U is connected ⇒ Z = U. □



A zero set of a harmonic f can have limit points: E.g., Re z. But no open sets.

Theorem (Identity)
Let U ⊂ ℂ be a domain and f : U → ℝ a harmonic function. Suppose V ⊂ U is a nonempty open
subset and f = 0 on V. Then f ≡ 0.

Proof: Let Zf = f−1(0). Let Z be the closure of the interior of Zf (subspace topology on U).

Suppose Z is nonempty and p ∈ Z.
If Δr(p) ⊂ U, f is zero on some open subset of Δr(p).

∃ a holomorphic h : Δr(p) → ℂ such that f = Re h on Δr(p).

⇒ h is holomorphic and purely imaginary on an open subset of Δr(p).
⇒ h is constant on an open subset of Δr(p).
⇒ h is constant on Δr(p).
⇒ f is constant on Δr(p).
⇒ f is zero on Δr(p).
⇒ Z is open.

Z is also closed and U is connected ⇒ Z = U. □



A zero set of a harmonic f can have limit points: E.g., Re z. But no open sets.

Theorem (Identity)
Let U ⊂ ℂ be a domain and f : U → ℝ a harmonic function. Suppose V ⊂ U is a nonempty open
subset and f = 0 on V. Then f ≡ 0.

Proof: Let Zf = f−1(0). Let Z be the closure of the interior of Zf (subspace topology on U).

Suppose Z is nonempty and p ∈ Z.
If Δr(p) ⊂ U, f is zero on some open subset of Δr(p).

∃ a holomorphic h : Δr(p) → ℂ such that f = Re h on Δr(p).
⇒ h is holomorphic and purely imaginary on an open subset of Δr(p).

⇒ h is constant on an open subset of Δr(p).
⇒ h is constant on Δr(p).
⇒ f is constant on Δr(p).
⇒ f is zero on Δr(p).
⇒ Z is open.

Z is also closed and U is connected ⇒ Z = U. □



A zero set of a harmonic f can have limit points: E.g., Re z. But no open sets.

Theorem (Identity)
Let U ⊂ ℂ be a domain and f : U → ℝ a harmonic function. Suppose V ⊂ U is a nonempty open
subset and f = 0 on V. Then f ≡ 0.

Proof: Let Zf = f−1(0). Let Z be the closure of the interior of Zf (subspace topology on U).

Suppose Z is nonempty and p ∈ Z.
If Δr(p) ⊂ U, f is zero on some open subset of Δr(p).

∃ a holomorphic h : Δr(p) → ℂ such that f = Re h on Δr(p).
⇒ h is holomorphic and purely imaginary on an open subset of Δr(p).
⇒ h is constant on an open subset of Δr(p).

⇒ h is constant on Δr(p).
⇒ f is constant on Δr(p).
⇒ f is zero on Δr(p).
⇒ Z is open.

Z is also closed and U is connected ⇒ Z = U. □



A zero set of a harmonic f can have limit points: E.g., Re z. But no open sets.

Theorem (Identity)
Let U ⊂ ℂ be a domain and f : U → ℝ a harmonic function. Suppose V ⊂ U is a nonempty open
subset and f = 0 on V. Then f ≡ 0.

Proof: Let Zf = f−1(0). Let Z be the closure of the interior of Zf (subspace topology on U).

Suppose Z is nonempty and p ∈ Z.
If Δr(p) ⊂ U, f is zero on some open subset of Δr(p).

∃ a holomorphic h : Δr(p) → ℂ such that f = Re h on Δr(p).
⇒ h is holomorphic and purely imaginary on an open subset of Δr(p).
⇒ h is constant on an open subset of Δr(p).
⇒ h is constant on Δr(p).

⇒ f is constant on Δr(p).
⇒ f is zero on Δr(p).
⇒ Z is open.

Z is also closed and U is connected ⇒ Z = U. □



A zero set of a harmonic f can have limit points: E.g., Re z. But no open sets.

Theorem (Identity)
Let U ⊂ ℂ be a domain and f : U → ℝ a harmonic function. Suppose V ⊂ U is a nonempty open
subset and f = 0 on V. Then f ≡ 0.

Proof: Let Zf = f−1(0). Let Z be the closure of the interior of Zf (subspace topology on U).

Suppose Z is nonempty and p ∈ Z.
If Δr(p) ⊂ U, f is zero on some open subset of Δr(p).

∃ a holomorphic h : Δr(p) → ℂ such that f = Re h on Δr(p).
⇒ h is holomorphic and purely imaginary on an open subset of Δr(p).
⇒ h is constant on an open subset of Δr(p).
⇒ h is constant on Δr(p).
⇒ f is constant on Δr(p).

⇒ f is zero on Δr(p).
⇒ Z is open.

Z is also closed and U is connected ⇒ Z = U. □



A zero set of a harmonic f can have limit points: E.g., Re z. But no open sets.

Theorem (Identity)
Let U ⊂ ℂ be a domain and f : U → ℝ a harmonic function. Suppose V ⊂ U is a nonempty open
subset and f = 0 on V. Then f ≡ 0.

Proof: Let Zf = f−1(0). Let Z be the closure of the interior of Zf (subspace topology on U).

Suppose Z is nonempty and p ∈ Z.
If Δr(p) ⊂ U, f is zero on some open subset of Δr(p).

∃ a holomorphic h : Δr(p) → ℂ such that f = Re h on Δr(p).
⇒ h is holomorphic and purely imaginary on an open subset of Δr(p).
⇒ h is constant on an open subset of Δr(p).
⇒ h is constant on Δr(p).
⇒ f is constant on Δr(p).
⇒ f is zero on Δr(p).

⇒ Z is open.

Z is also closed and U is connected ⇒ Z = U. □



A zero set of a harmonic f can have limit points: E.g., Re z. But no open sets.

Theorem (Identity)
Let U ⊂ ℂ be a domain and f : U → ℝ a harmonic function. Suppose V ⊂ U is a nonempty open
subset and f = 0 on V. Then f ≡ 0.

Proof: Let Zf = f−1(0). Let Z be the closure of the interior of Zf (subspace topology on U).

Suppose Z is nonempty and p ∈ Z.
If Δr(p) ⊂ U, f is zero on some open subset of Δr(p).

∃ a holomorphic h : Δr(p) → ℂ such that f = Re h on Δr(p).
⇒ h is holomorphic and purely imaginary on an open subset of Δr(p).
⇒ h is constant on an open subset of Δr(p).
⇒ h is constant on Δr(p).
⇒ f is constant on Δr(p).
⇒ f is zero on Δr(p).
⇒ Z is open.

Z is also closed and U is connected ⇒ Z = U. □



A zero set of a harmonic f can have limit points: E.g., Re z. But no open sets.

Theorem (Identity)
Let U ⊂ ℂ be a domain and f : U → ℝ a harmonic function. Suppose V ⊂ U is a nonempty open
subset and f = 0 on V. Then f ≡ 0.

Proof: Let Zf = f−1(0). Let Z be the closure of the interior of Zf (subspace topology on U).

Suppose Z is nonempty and p ∈ Z.
If Δr(p) ⊂ U, f is zero on some open subset of Δr(p).

∃ a holomorphic h : Δr(p) → ℂ such that f = Re h on Δr(p).
⇒ h is holomorphic and purely imaginary on an open subset of Δr(p).
⇒ h is constant on an open subset of Δr(p).
⇒ h is constant on Δr(p).
⇒ f is constant on Δr(p).
⇒ f is zero on Δr(p).
⇒ Z is open.

Z is also closed and U is connected ⇒ Z = U. □



Theorem (Maximum principle)
Suppose U ⊂ ℂ is a domain and f : U → ℝ is harmonic. If f attains a local maximum (or a local
minimum) in U, then f is constant.

Proof: WLOG assume f has a local maximum at p ∈ U (otherwise consider −f ).

It is the global maximum on some Δr(p) ⊂ U.

There exists a holomorphic h : Δr(p) → ℂ such that f = Re h.

h takes Δr(p) to X =
{
w ∈ ℂ : Re w ≤ f (p)

}
.

h(p) is on the boundary of X (as Re h(p) = f (p)).

⇒ h
(
Δr(p)

)
is not open ⇒ h is constant (open mapping theorem)

⇒ f is constant on Δr(p) ⇒ f is constant on U by identity. □
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Exercise: Prove that the maximum principle for harmonic functions implies the maximum
modulus principle for holomorphic functions. Hint: Consider log|f (z)|.

Exercise: Prove the second version of the maximum principle: If U ⊂ ℂ is a bounded
domain and f : U → ℝ is continuous and harmonic on U, then f achieves both its
maximum and its minimum on the boundary 𝜕U.

Exercise: Suppose U ⊂ ℂ is a domain and f : U → ℝ is harmonic. Prove that f (U) is an
open interval or a single point.
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