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Exercise: Show by example that Harnack’s general inequality need not hold if U is not
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Exercise: Find the following counterexample of Harnack’s inequality if f is not assumed to
be nonnegative. For every M > 0 find a harmonic function f: D — R such that f(0) = 1
and f(1/2) > M.

Exercise: Use Harnack’s inequality to prove Liouville’s theorem for harmonic functions:
If f: C — R is harmonic and nonnegative, then f is constant.
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Exercise: Prove yet another version of Harnack’s principle. Suppose U C C is a domain,
{fu} is a sequence of nonnegative harmonic functions on U, and p € U is fixed.

a) If fu(p) — +oo, then {f,} converges to +co uniformly on compact subsets.

b) If f: U — R is harmonic, f,(z) < f(z) for all z € U, and f,,(p) — f(p), then {f,.}
converges to f uniformly on compact subsets.
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b) If f: U — R is harmonic, f,(z) < f(z) for all z € U, and f,,(p) — f(p), then {f,.}
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Exercise: Prove a Montel-like theorem for harmonic functions. Suppose U C Cis a
domain and {f,} is a sequence of nonnegative harmonic functions. Show that at least one
(or both) of the following are true:

(i) 3 asubsequence converging to +oco uniformly on compact subsets.

(ii) 3 a subsequence converging to a harmonic function uniformly on compact subsets.



