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Analytic functions are functions equal to a convergent power series near every point.

Definition
Let U ⊂ ℂ be open. A function f : U → ℂ is analytic if for every p ∈ U, there exists an r > 0
and a power series

∑
cn(z − p)n converging to f on Δr(p) ⊂ U.

Eventually, we will see that function is holomorphic if and only if it is analytic.

But that is not so easy. Today we will prove that analytic ⇒ holomorphic.

Remark: A subtle point is that it is not immediate that a convergent power series is
analytic.
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Proposition
Let f : ΔR(p) → ℂ be defined by

f (z) =
∞∑

n=0
cn(z − p)n , converging in ΔR(p).

Then f is complex differentiable at every z ∈ ΔR(p), and

f ′(z) =
∞∑

n=1
ncn(z − p)n−1 , converging in ΔR(p).

Proof: WLOG p = 0.

Consider the difference quotient of zn at z0

zn − zn
0

z − z0
=

n−1∑
k=0

zkzn−1−k
0 →

as z→z0
nzn−1

0 .



Proposition
Let f : ΔR(p) → ℂ be defined by

f (z) =
∞∑

n=0
cn(z − p)n , converging in ΔR(p).

Then f is complex differentiable at every z ∈ ΔR(p), and

f ′(z) =
∞∑

n=1
ncn(z − p)n−1 , converging in ΔR(p).

Proof: WLOG p = 0.

Consider the difference quotient of zn at z0

zn − zn
0

z − z0
=

n−1∑
k=0

zkzn−1−k
0 →

as z→z0
nzn−1

0 .



Proposition
Let f : ΔR(p) → ℂ be defined by

f (z) =
∞∑

n=0
cn(z − p)n , converging in ΔR(p).

Then f is complex differentiable at every z ∈ ΔR(p), and

f ′(z) =
∞∑

n=1
ncn(z − p)n−1 , converging in ΔR(p).

Proof: WLOG p = 0.

Consider the difference quotient of zn at z0

zn − zn
0

z − z0
=

n−1∑
k=0

zkzn−1−k
0 →

as z→z0
nzn−1

0 .



Proposition
Let f : ΔR(p) → ℂ be defined by

f (z) =
∞∑

n=0
cn(z − p)n , converging in ΔR(p).

Then f is complex differentiable at every z ∈ ΔR(p), and

f ′(z) =
∞∑

n=1
ncn(z − p)n−1 , converging in ΔR(p).

Proof: WLOG p = 0.

Consider the difference quotient of zn at z0

zn − zn
0

z − z0
=

n−1∑
k=0

zkzn−1−k
0

→
as z→z0

nzn−1
0 .



Proposition
Let f : ΔR(p) → ℂ be defined by

f (z) =
∞∑

n=0
cn(z − p)n , converging in ΔR(p).

Then f is complex differentiable at every z ∈ ΔR(p), and

f ′(z) =
∞∑

n=1
ncn(z − p)n−1 , converging in ΔR(p).

Proof: WLOG p = 0.

Consider the difference quotient of zn at z0

zn − zn
0

z − z0
=

n−1∑
k=0

zkzn−1−k
0 →

as z→z0
nzn−1

0 .



Suppose z0 , z ∈ ΔR(0),

f (z) − f (z0)
z − z0

=
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n=1

cn
zn − zn

0
z − z0

=

∞∑
n=1

cn

n−1∑
k=0

zkzn−1−k
0 .

We need to show that the expression on the right is a continuous function of z at z0.
It is continuous if the series converges uniformly for z in a neighborhood of z0.

p
r

s

R

Suppose 0 < s < r < R and z0 , z ∈ Δs(0).�����cn

n−1∑
k=0

zkzn−1−k
0

����� ≤ n−1∑
k=0

|cn |sn−1 = n|cn |sn−1 = n|cn |rn−1
( s
r

)n−1

|cn |rn−1 is bounded by some M > 0 (f converges in ΔR(0) and r < R)

n
√

n|cn |sn−1 =
n

√
n|cn |rn−1

( s
r

)n−1
≤ n

√
nM

( s
r

)n−1
→

as n→∞
s
r
< 1

so
∑

n|cn |sn−1 converges (root test).
So

∑∞
n=1 cn

∑n−1
k=0 zkzn−1−k

0 , converges uniformly in z on Δs(p).



Suppose z0 , z ∈ ΔR(0),

f (z) − f (z0)
z − z0

=

∞∑
n=1

cn
zn − zn

0
z − z0

=

∞∑
n=1

cn

n−1∑
k=0

zkzn−1−k
0 .

We need to show that the expression on the right is a continuous function of z at z0.
It is continuous if the series converges uniformly for z in a neighborhood of z0.

p
r

s

R

Suppose 0 < s < r < R and z0 , z ∈ Δs(0).�����cn

n−1∑
k=0

zkzn−1−k
0

����� ≤ n−1∑
k=0

|cn |sn−1 = n|cn |sn−1 = n|cn |rn−1
( s
r

)n−1

|cn |rn−1 is bounded by some M > 0 (f converges in ΔR(0) and r < R)

n
√

n|cn |sn−1 =
n

√
n|cn |rn−1

( s
r

)n−1
≤ n

√
nM

( s
r

)n−1
→

as n→∞
s
r
< 1

so
∑

n|cn |sn−1 converges (root test).
So

∑∞
n=1 cn

∑n−1
k=0 zkzn−1−k

0 , converges uniformly in z on Δs(p).



Suppose z0 , z ∈ ΔR(0),

f (z) − f (z0)
z − z0

=

∞∑
n=1

cn
zn − zn

0
z − z0

=

∞∑
n=1

cn

n−1∑
k=0

zkzn−1−k
0 .

We need to show that the expression on the right is a continuous function of z at z0.
It is continuous if the series converges uniformly for z in a neighborhood of z0.

p
r

s

R

Suppose 0 < s < r < R and z0 , z ∈ Δs(0).�����cn

n−1∑
k=0

zkzn−1−k
0

����� ≤ n−1∑
k=0

|cn |sn−1 = n|cn |sn−1 = n|cn |rn−1
( s
r

)n−1

|cn |rn−1 is bounded by some M > 0 (f converges in ΔR(0) and r < R)

n
√

n|cn |sn−1 =
n

√
n|cn |rn−1

( s
r

)n−1
≤ n

√
nM

( s
r

)n−1
→

as n→∞
s
r
< 1

so
∑

n|cn |sn−1 converges (root test).
So

∑∞
n=1 cn

∑n−1
k=0 zkzn−1−k

0 , converges uniformly in z on Δs(p).



Suppose z0 , z ∈ ΔR(0),

f (z) − f (z0)
z − z0

=

∞∑
n=1

cn
zn − zn

0
z − z0

=

∞∑
n=1

cn

n−1∑
k=0

zkzn−1−k
0 .

We need to show that the expression on the right is a continuous function of z at z0.

It is continuous if the series converges uniformly for z in a neighborhood of z0.

p
r

s

R

Suppose 0 < s < r < R and z0 , z ∈ Δs(0).�����cn

n−1∑
k=0

zkzn−1−k
0

����� ≤ n−1∑
k=0

|cn |sn−1 = n|cn |sn−1 = n|cn |rn−1
( s
r

)n−1

|cn |rn−1 is bounded by some M > 0 (f converges in ΔR(0) and r < R)

n
√

n|cn |sn−1 =
n

√
n|cn |rn−1

( s
r

)n−1
≤ n

√
nM

( s
r

)n−1
→

as n→∞
s
r
< 1

so
∑

n|cn |sn−1 converges (root test).
So

∑∞
n=1 cn

∑n−1
k=0 zkzn−1−k

0 , converges uniformly in z on Δs(p).



Suppose z0 , z ∈ ΔR(0),

f (z) − f (z0)
z − z0

=

∞∑
n=1

cn
zn − zn

0
z − z0

=

∞∑
n=1

cn

n−1∑
k=0

zkzn−1−k
0 .

We need to show that the expression on the right is a continuous function of z at z0.
It is continuous if the series converges uniformly for z in a neighborhood of z0.

p
r

s

R

Suppose 0 < s < r < R and z0 , z ∈ Δs(0).�����cn

n−1∑
k=0

zkzn−1−k
0

����� ≤ n−1∑
k=0

|cn |sn−1 = n|cn |sn−1 = n|cn |rn−1
( s
r

)n−1

|cn |rn−1 is bounded by some M > 0 (f converges in ΔR(0) and r < R)

n
√

n|cn |sn−1 =
n

√
n|cn |rn−1

( s
r

)n−1
≤ n

√
nM

( s
r

)n−1
→

as n→∞
s
r
< 1

so
∑

n|cn |sn−1 converges (root test).
So

∑∞
n=1 cn

∑n−1
k=0 zkzn−1−k

0 , converges uniformly in z on Δs(p).



Suppose z0 , z ∈ ΔR(0),

f (z) − f (z0)
z − z0

=

∞∑
n=1

cn
zn − zn

0
z − z0

=

∞∑
n=1

cn

n−1∑
k=0

zkzn−1−k
0 .

We need to show that the expression on the right is a continuous function of z at z0.
It is continuous if the series converges uniformly for z in a neighborhood of z0.

p
r

s

R

Suppose 0 < s < r < R and z0 , z ∈ Δs(0).

�����cn

n−1∑
k=0

zkzn−1−k
0

����� ≤ n−1∑
k=0

|cn |sn−1 = n|cn |sn−1 = n|cn |rn−1
( s
r

)n−1

|cn |rn−1 is bounded by some M > 0 (f converges in ΔR(0) and r < R)

n
√

n|cn |sn−1 =
n

√
n|cn |rn−1

( s
r

)n−1
≤ n

√
nM

( s
r

)n−1
→

as n→∞
s
r
< 1

so
∑

n|cn |sn−1 converges (root test).
So

∑∞
n=1 cn

∑n−1
k=0 zkzn−1−k

0 , converges uniformly in z on Δs(p).



Suppose z0 , z ∈ ΔR(0),

f (z) − f (z0)
z − z0

=

∞∑
n=1

cn
zn − zn

0
z − z0

=

∞∑
n=1

cn

n−1∑
k=0

zkzn−1−k
0 .

We need to show that the expression on the right is a continuous function of z at z0.
It is continuous if the series converges uniformly for z in a neighborhood of z0.

p
r

s

R

Suppose 0 < s < r < R and z0 , z ∈ Δs(0).�����cn

n−1∑
k=0

zkzn−1−k
0

����� ≤ n−1∑
k=0

|cn |sn−1 = n|cn |sn−1 = n|cn |rn−1
( s
r

)n−1

|cn |rn−1 is bounded by some M > 0 (f converges in ΔR(0) and r < R)

n
√

n|cn |sn−1 =
n

√
n|cn |rn−1

( s
r

)n−1
≤ n

√
nM

( s
r

)n−1
→

as n→∞
s
r
< 1

so
∑

n|cn |sn−1 converges (root test).
So

∑∞
n=1 cn

∑n−1
k=0 zkzn−1−k

0 , converges uniformly in z on Δs(p).



Suppose z0 , z ∈ ΔR(0),

f (z) − f (z0)
z − z0

=

∞∑
n=1

cn
zn − zn

0
z − z0

=

∞∑
n=1

cn

n−1∑
k=0

zkzn−1−k
0 .

We need to show that the expression on the right is a continuous function of z at z0.
It is continuous if the series converges uniformly for z in a neighborhood of z0.

p
r

s

R

Suppose 0 < s < r < R and z0 , z ∈ Δs(0).�����cn

n−1∑
k=0

zkzn−1−k
0

����� ≤ n−1∑
k=0

|cn |sn−1 = n|cn |sn−1 = n|cn |rn−1
( s
r

)n−1

|cn |rn−1 is bounded by some M > 0 (f converges in ΔR(0) and r < R)

n
√

n|cn |sn−1 =
n

√
n|cn |rn−1

( s
r

)n−1
≤ n

√
nM

( s
r

)n−1
→

as n→∞
s
r
< 1

so
∑

n|cn |sn−1 converges (root test).
So

∑∞
n=1 cn

∑n−1
k=0 zkzn−1−k

0 , converges uniformly in z on Δs(p).



Suppose z0 , z ∈ ΔR(0),

f (z) − f (z0)
z − z0

=

∞∑
n=1

cn
zn − zn

0
z − z0

=

∞∑
n=1

cn

n−1∑
k=0

zkzn−1−k
0 .

We need to show that the expression on the right is a continuous function of z at z0.
It is continuous if the series converges uniformly for z in a neighborhood of z0.

p
r

s

R

Suppose 0 < s < r < R and z0 , z ∈ Δs(0).�����cn

n−1∑
k=0

zkzn−1−k
0

����� ≤ n−1∑
k=0

|cn |sn−1 = n|cn |sn−1 = n|cn |rn−1
( s
r

)n−1

|cn |rn−1 is bounded by some M > 0 (f converges in ΔR(0) and r < R)

n
√

n|cn |sn−1 =
n

√
n|cn |rn−1

( s
r

)n−1
≤ n

√
nM

( s
r

)n−1
→

as n→∞
s
r
< 1

so
∑

n|cn |sn−1 converges (root test).
So

∑∞
n=1 cn

∑n−1
k=0 zkzn−1−k

0 , converges uniformly in z on Δs(p).



Suppose z0 , z ∈ ΔR(0),

f (z) − f (z0)
z − z0

=

∞∑
n=1

cn
zn − zn

0
z − z0

=

∞∑
n=1

cn

n−1∑
k=0

zkzn−1−k
0 .

We need to show that the expression on the right is a continuous function of z at z0.
It is continuous if the series converges uniformly for z in a neighborhood of z0.

p
r

s

R

Suppose 0 < s < r < R and z0 , z ∈ Δs(0).�����cn

n−1∑
k=0

zkzn−1−k
0

����� ≤ n−1∑
k=0

|cn |sn−1 = n|cn |sn−1 = n|cn |rn−1
( s
r

)n−1

|cn |rn−1 is bounded by some M > 0 (f converges in ΔR(0) and r < R)

n
√

n|cn |sn−1 =
n

√
n|cn |rn−1

( s
r

)n−1
≤ n

√
nM

( s
r

)n−1
→

as n→∞
s
r
< 1

so
∑

n|cn |sn−1 converges (root test).

So
∑∞

n=1 cn
∑n−1

k=0 zkzn−1−k
0 , converges uniformly in z on Δs(p).



Suppose z0 , z ∈ ΔR(0),

f (z) − f (z0)
z − z0

=

∞∑
n=1

cn
zn − zn

0
z − z0

=

∞∑
n=1

cn

n−1∑
k=0

zkzn−1−k
0 .

We need to show that the expression on the right is a continuous function of z at z0.
It is continuous if the series converges uniformly for z in a neighborhood of z0.

p
r

s

R

Suppose 0 < s < r < R and z0 , z ∈ Δs(0).�����cn

n−1∑
k=0

zkzn−1−k
0

����� ≤ n−1∑
k=0

|cn |sn−1 = n|cn |sn−1 = n|cn |rn−1
( s
r

)n−1

|cn |rn−1 is bounded by some M > 0 (f converges in ΔR(0) and r < R)

n
√

n|cn |sn−1 =
n

√
n|cn |rn−1

( s
r

)n−1
≤ n

√
nM

( s
r

)n−1
→

as n→∞
s
r
< 1

so
∑

n|cn |sn−1 converges (root test).
So

∑∞
n=1 cn

∑n−1
k=0 zkzn−1−k

0 , converges uniformly in z on Δs(p).



So we can swap the limits:

lim
z→z0

f (z) − f (z0)
z − z0

=

∞∑
n=1

cn

n−1∑
k=0

zk
0zn−1−k

0 =

∞∑
n=1

ncnzn−1
0 .

As s and r were arbitrary we get the result at any z0 ∈ ΔR(0). □

Corollary

Let f : ΔR(p) → ℂ be defined by f (z) =
∞∑

n=0
cn(z − p)n, converging in ΔR(p).

Then f is infinitely complex differentiable in ΔR(p), and the kth derivative is given by

f (k)(z) =
∞∑

n=k

n(n − 1) · · · (n − k + 1)cn(z − p)n−k , converging in ΔR(p).

Furthermore, cn =
f (n)(p)

n! .
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A consequence is that the power series is unique since the coefficients are unique

cn =
f (n)(p)

n! .

In fact, cn depends only on values of f in arbitrarily small neighborhood of p.

Applied to the analytic functions we get:

Corollary
An analytic function is infinitely complex differentiable, and each derivative is analytic.
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