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Define the exponential ez for z ∈ ℂ (using the real exponential and sin/cos):

exp(z) = ez = ex+iy def
= exeiy = ex cos y + iex sin y.

Some immediate properties:

ez̄ = ex−iy = ex cos y − iex sin y = ez , |ez | = |ex+iy | = ex.

Graphs of the real and imaginary part:
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Proposition
For any two complex numbers z,w ∈ ℂ, ez+w = ezew.

Proof is an exercise (requires trig identities).

Euler’s formula (𝜃 ∈ ℝ):
ei𝜃 = cos𝜃 + i sin𝜃.

Meaning for 𝜃 ∈ ℝ:

cos𝜃 = Re ei𝜃 =
ei𝜃 + e−i𝜃

2 , sin𝜃 = Im ei𝜃 =
ei𝜃 − e−i𝜃

2i
.

We define sin and cos for z ∈ ℂ accordingly:

cos z def
=

eiz + e−iz

2 , sin z def
=

eiz − e−iz

2i
.
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ℂ is just the plane, so we can use polar coordinates for z = x + iy: x = r cos𝜃 and y = r sin𝜃.

Due to the Euler formula:

z = rei𝜃 = r cos𝜃 + ir sin𝜃 = x + iy.

𝜃
r

rei𝜃

We call rei𝜃 the polar form.

r = |z| =
√

x2 + y2 is the modulus.

𝜃 is called the argument.
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Polar form is good for multiplication and powers:

Suppose z = rei𝜃 and w = sei𝜓,

zw = rei𝜃sei𝜓 = rsei(𝜃+𝜓) ,
1
z
=

1
rei𝜃 =

1
r

e−i𝜃 , zn =
(
rei𝜃 )n

= rnein𝜃 .

Multiplication rotates by the argument and scales by the modulus.

Again note that i = ei𝜋/2 is rotation counterclockwise by 90 degrees.

The downside is that the polar form is terrible for addition.
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