
Cultivating Complex Analysis:
The maximum modulus principle (3.3.3)

Jiří Lebl

Departemento pri Matematiko de Oklahoma Ŝtata Universitato



A useful consequence of the Cauchy’s integral formula is the maximum modulus principle
(or just maximum principle):

Theorem (Maximum modulus principle)
Suppose U ⊂ ℂ is a domain and f : U → ℂ is holomorphic. If |f (z)| achieves a local maximum on
U, then f is constant.

The basic idea: Cauchy’s integral formula says that f (z) is the average of f on a small circle
centered at z. The average can’t be bigger than the numbers we’re averaging.

Proof: Suppose |f (z)| achieves a local maximum at p ∈ U. WLOG p = 0.

Also WLOG suppose f (0) ≥ 0 (otherwise multiply by some ei𝜃).

Take a closed disc Δr(0) ⊂ U,
where r is small enough so that |f (z)| ≤ |f (0)| = f (0) whenever |z| ≤ r.
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Cauchy’s formula says

f (0) = |f (0)| =
���� 1
2𝜋i

∫
𝜕Δr(0)

f (z)
z

dz
����

=

���� 1
2𝜋i

∫ 2𝜋

0

f (reit)
reit rieit dt

����
≤ 1

2𝜋

∫ 2𝜋

0
|f (reit)| dt ≤ 1

2𝜋

∫ 2𝜋

0
f (0) dt = f (0).

⇒ all the inequalities above are equalities.

In addition, f (0) − |f (reit)| ≥ 0 for all t, and∫ 2𝜋

0

(
f (0) − |f (reit)|

)
dt = 0, ⇒ |f (reit)| = f (0) for all t.

Applying Cauchy’s formula again:

1
2𝜋

∫ 2𝜋

0
|f (reit)| dt = f (0) = 1

2𝜋

∫ 2𝜋

0
f (reit) dt

or

0 = Re
∫ 2𝜋

0

(
|f (reit)| − f (reit)

)
dt =

∫ 2𝜋

0

(
|f (reit)| − Re f (reit)

)
dt.
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|w| − Re w ≥ 0 holds for all w ∈ ℂ.

So |f (reit)| − Re f (reit) ≥ 0 for all t.∫ 2𝜋

0

(
|f (reit)| − Re f (reit)

)
dt = 0 ⇒ |f (reit)| = Re f (reit) for all t

⇒ Im f (reit) = 0 ⇒ f (reit) = |f (reit)| = f (0) for all t.

The above is true for all small enough r > 0.

So the set where f (z) = f (0) contains a disc, and f is constant by the identity theorem. □

Corollary (Maximum modulus principle, part deux)
Suppose U ⊂ ℂ is nonempty, open, and bounded (so U is compact). If f : U → ℂ is continuous
and the restriction f |U is holomorphic, then |f (z)| achieves a maximum on 𝜕U. In other words,

sup
z∈U

|f (z)| ≤ sup
z∈𝜕U

|f (z)|.

Proof is an exercise.



|w| − Re w ≥ 0 holds for all w ∈ ℂ.

So |f (reit)| − Re f (reit) ≥ 0 for all t.

∫ 2𝜋

0

(
|f (reit)| − Re f (reit)

)
dt = 0 ⇒ |f (reit)| = Re f (reit) for all t

⇒ Im f (reit) = 0 ⇒ f (reit) = |f (reit)| = f (0) for all t.

The above is true for all small enough r > 0.

So the set where f (z) = f (0) contains a disc, and f is constant by the identity theorem. □

Corollary (Maximum modulus principle, part deux)
Suppose U ⊂ ℂ is nonempty, open, and bounded (so U is compact). If f : U → ℂ is continuous
and the restriction f |U is holomorphic, then |f (z)| achieves a maximum on 𝜕U. In other words,

sup
z∈U

|f (z)| ≤ sup
z∈𝜕U

|f (z)|.

Proof is an exercise.



|w| − Re w ≥ 0 holds for all w ∈ ℂ.

So |f (reit)| − Re f (reit) ≥ 0 for all t.∫ 2𝜋

0

(
|f (reit)| − Re f (reit)

)
dt = 0 ⇒ |f (reit)| = Re f (reit) for all t

⇒ Im f (reit) = 0 ⇒ f (reit) = |f (reit)| = f (0) for all t.

The above is true for all small enough r > 0.

So the set where f (z) = f (0) contains a disc, and f is constant by the identity theorem. □

Corollary (Maximum modulus principle, part deux)
Suppose U ⊂ ℂ is nonempty, open, and bounded (so U is compact). If f : U → ℂ is continuous
and the restriction f |U is holomorphic, then |f (z)| achieves a maximum on 𝜕U. In other words,

sup
z∈U

|f (z)| ≤ sup
z∈𝜕U

|f (z)|.

Proof is an exercise.



|w| − Re w ≥ 0 holds for all w ∈ ℂ.

So |f (reit)| − Re f (reit) ≥ 0 for all t.∫ 2𝜋

0

(
|f (reit)| − Re f (reit)

)
dt = 0 ⇒ |f (reit)| = Re f (reit) for all t

⇒ Im f (reit) = 0

⇒ f (reit) = |f (reit)| = f (0) for all t.

The above is true for all small enough r > 0.

So the set where f (z) = f (0) contains a disc, and f is constant by the identity theorem. □

Corollary (Maximum modulus principle, part deux)
Suppose U ⊂ ℂ is nonempty, open, and bounded (so U is compact). If f : U → ℂ is continuous
and the restriction f |U is holomorphic, then |f (z)| achieves a maximum on 𝜕U. In other words,

sup
z∈U

|f (z)| ≤ sup
z∈𝜕U

|f (z)|.

Proof is an exercise.



|w| − Re w ≥ 0 holds for all w ∈ ℂ.

So |f (reit)| − Re f (reit) ≥ 0 for all t.∫ 2𝜋

0

(
|f (reit)| − Re f (reit)

)
dt = 0 ⇒ |f (reit)| = Re f (reit) for all t

⇒ Im f (reit) = 0 ⇒ f (reit) = |f (reit)| = f (0) for all t.

The above is true for all small enough r > 0.

So the set where f (z) = f (0) contains a disc, and f is constant by the identity theorem. □

Corollary (Maximum modulus principle, part deux)
Suppose U ⊂ ℂ is nonempty, open, and bounded (so U is compact). If f : U → ℂ is continuous
and the restriction f |U is holomorphic, then |f (z)| achieves a maximum on 𝜕U. In other words,

sup
z∈U

|f (z)| ≤ sup
z∈𝜕U

|f (z)|.

Proof is an exercise.



|w| − Re w ≥ 0 holds for all w ∈ ℂ.

So |f (reit)| − Re f (reit) ≥ 0 for all t.∫ 2𝜋

0

(
|f (reit)| − Re f (reit)

)
dt = 0 ⇒ |f (reit)| = Re f (reit) for all t

⇒ Im f (reit) = 0 ⇒ f (reit) = |f (reit)| = f (0) for all t.

The above is true for all small enough r > 0.

So the set where f (z) = f (0) contains a disc, and f is constant by the identity theorem. □

Corollary (Maximum modulus principle, part deux)
Suppose U ⊂ ℂ is nonempty, open, and bounded (so U is compact). If f : U → ℂ is continuous
and the restriction f |U is holomorphic, then |f (z)| achieves a maximum on 𝜕U. In other words,

sup
z∈U

|f (z)| ≤ sup
z∈𝜕U

|f (z)|.

Proof is an exercise.



|w| − Re w ≥ 0 holds for all w ∈ ℂ.

So |f (reit)| − Re f (reit) ≥ 0 for all t.∫ 2𝜋

0

(
|f (reit)| − Re f (reit)

)
dt = 0 ⇒ |f (reit)| = Re f (reit) for all t

⇒ Im f (reit) = 0 ⇒ f (reit) = |f (reit)| = f (0) for all t.

The above is true for all small enough r > 0.

So the set where f (z) = f (0) contains a disc, and f is constant by the identity theorem. □

Corollary (Maximum modulus principle, part deux)
Suppose U ⊂ ℂ is nonempty, open, and bounded (so U is compact). If f : U → ℂ is continuous
and the restriction f |U is holomorphic, then |f (z)| achieves a maximum on 𝜕U. In other words,

sup
z∈U

|f (z)| ≤ sup
z∈𝜕U

|f (z)|.

Proof is an exercise.



|w| − Re w ≥ 0 holds for all w ∈ ℂ.

So |f (reit)| − Re f (reit) ≥ 0 for all t.∫ 2𝜋

0

(
|f (reit)| − Re f (reit)

)
dt = 0 ⇒ |f (reit)| = Re f (reit) for all t

⇒ Im f (reit) = 0 ⇒ f (reit) = |f (reit)| = f (0) for all t.

The above is true for all small enough r > 0.

So the set where f (z) = f (0) contains a disc, and f is constant by the identity theorem. □

Corollary (Maximum modulus principle, part deux)
Suppose U ⊂ ℂ is nonempty, open, and bounded (so U is compact).

If f : U → ℂ is continuous
and the restriction f |U is holomorphic, then |f (z)| achieves a maximum on 𝜕U. In other words,

sup
z∈U

|f (z)| ≤ sup
z∈𝜕U

|f (z)|.

Proof is an exercise.



|w| − Re w ≥ 0 holds for all w ∈ ℂ.

So |f (reit)| − Re f (reit) ≥ 0 for all t.∫ 2𝜋

0

(
|f (reit)| − Re f (reit)

)
dt = 0 ⇒ |f (reit)| = Re f (reit) for all t

⇒ Im f (reit) = 0 ⇒ f (reit) = |f (reit)| = f (0) for all t.

The above is true for all small enough r > 0.

So the set where f (z) = f (0) contains a disc, and f is constant by the identity theorem. □

Corollary (Maximum modulus principle, part deux)
Suppose U ⊂ ℂ is nonempty, open, and bounded (so U is compact). If f : U → ℂ is continuous
and the restriction f |U is holomorphic, then |f (z)| achieves a maximum on 𝜕U.
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z∈U
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z∈𝜕U

|f (z)|.

Proof is an exercise.
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There’s a version for a miminum if you avoid zeros:

Exercise: (Minimum modulus principle) Suppose U ⊂ ℂ is a domain and f : U → ℂ is
holomorphic. If |f (z)| achieves a local minimum at p ∈ U and f (p) ≠ 0, then f is constant.


