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I.e., when
du| _ Jdv du| _ du
ax Z0 ay Z()’ ax Z0 B ay Z(].
Then Df|,, corresponds to multiplication by & = a—ﬂZO 1a—§|20 = a—;|20 - 18—;|ZO.
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Proposition
Let U c Cbeopenand f = u +iv: U — C be a function. Then f is complex differentiable at
zo € U if and only if f (real) differentiable at zy € U with %| = 2| gpd 2| = -
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In this case, f’(zo) = %LO '%to = §—Z|ZO - ig—;LO.
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The equations (1) are called the Cauchy—Riemann equations.
Complex analysis is the study of their solutions.

Remark: If only the partial derivatives exist but aren’t continuous, the function may fail to
be differentiable (or even continuous) and may not be holomorphic even if it satisfies (1).
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Hint: Note that e**¥ = ¢* cosy + ie* sin y and use the Corollary from previous slide.



