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Given a compact K ⊂ U, we want a Γ in U \ K homologous to zero in U that goes around K.

Lemma
Let U ⊂ ℂ be open and suppose that K ⊂ U is compact and nonempty. Then there exists a cycle Γ
in U \ K such that n(Γ; z) = 1 for all z ∈ K and n(Γ; z) = 0 for all z ∈ ℂ \ U and such that n(Γ; z) is
0 or 1 for all z ∉ Γ.

Lots of ideas how to do it, but proof always involves checking many details.
We will map to the disk, but with a twist. We’ll take ℂ∞ \ K to the disc, and go around the
“outside” in the opposite direction:
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Proof: K could have infinitely many components.

For a small r > 0, ∃ closed discs such that

K ⊂ K′ = Δr(z1) ∪ · · · ∪ Δr(zm) ⊂ U.

K′ is compact and has only finitely many components. A Γ around K′ suffices as K ⊂ K′.

Let K1 , . . . ,Kn be the components of K′. K1 and K2 ∪ · · · ∪ Kn are closed.

If we prove the lemma for K1 and U \ (K2 ∪ · · · ∪ Kn) to find a cycle Γ1, then we are done:

Repeat the procedure for each Kj to find Γj and let Γ = Γ1 + · · · + Γn.

n(Γj; z) = 1 for all z ∈ Kj and n(Γj; z) = 0 for all z ∈ Kℓ if ℓ ≠ j. So Γ works.

So without loss of generality, assume that K is connected.
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Assume 0 ∈ K.

Assume K has more than one point.

Let 𝜑 : ℂ∞ → ℂ∞, be 𝜑(z) = 1
z for z ∈ ℂ \ {0}, 𝜑(0) = ∞ and 𝜑(∞) = 0. Let

V = 𝜑(ℂ∞ \ K).

∞ ∉ V, 0 ∈ V, V ≠ ℂ, and ℂ∞ \ V = 𝜑(K) is connected.
So components of V are simply connected (exercise).
K a union of discs ⇒ ℂ∞ \ K and thus V has finitely many components V1 , . . . ,Vm.

By RMT, ∀j, ∃ a biholomorphic map from Vj to Δ1(qj) (disjoint).
Write

D = Δ1(q1) ∪ · · · ∪ Δ1(qm).

So ∃ biholomorphic 𝜓 : V → D, q1 = 0 and 𝜓(0) = 0 = q1.
ℂ∞ \ U is compact ⇒ 𝜑(ℂ∞ \ U) ⊂ V is compact ⇒ S = 𝜓

(
𝜑(ℂ∞ \ U)

)
⊂ D is compact.

∃ r < 1 such that
S ⊂ Δr(q1) ∪ · · · ∪ Δr(qm)

Let 𝛾j(t) = qj + re−it for t ∈ [0, 2𝜋] (𝛾j = −𝜕Δr(qj)).
Let Γj = 𝜑−1 ◦ 𝜓−1 ◦ 𝛾j, and Γ = Γ1 + · · · + Γm.
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Theorem
Let U ⊂ ℂ be a domain. Then ℂ∞ \ U is connected if and only if U is simply connected.

Proof: Forward direction is done (we’ve just used it above).

Suppose ℂ∞ \ U is disconnected.

Write S ∪ K = ℂ∞ \ U where S and K are nonempty, closed, and disjoint.

Assume ∞ ∈ S.

U′ = U ∪ K is open as S is closed, U′ ⊂ ℂ, K ⊂ U′ is compact.

Apply lemma to find a cycle Γ in U = U′ \ K such that n(Γ; z) = 1 for all z ∈ K.

In other words, Γ is not homologous to zero in U. □
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Exercise: Suppose {fn} is a sequence of holomorphic functions on an open set U ⊂ ℂ that
converges uniformly on compact subsets to a nonconstant f : U → ℂ. Let K ⊂ U be a
compact set. Prove that for every open neighborhood V of K in U (so K ⊂ V ⊂ U) there
exists a smaller open neighborhood W (so K ⊂ W ⊂ V) and an N ∈ ℕ such that f and fn
have the same number of zeros in W for all n ≥ N.


