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A set X is convex if [a,b] C X for alla, b € X.
Leta, b, c € C be noncollinear.

A triangle T is with vertices a, b, c is the convex hull of {4, b, c}, that is, the smallest convex
set containing the points.

In other words, T is the set of points
ta+ trb + tsc,

where t1,1p,t3 € [0,1] and t] + £, + 3 = 1.

The triangle is oriented positively if the vertices
are ordered so that a, b, c goes counterclockwise.

The boundary JT of T is defined as the cycle
dT = [a,b] + [b,c] + [c,a].

Note that our triangle T is the solid triangle
(includes the interior).
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Theorem (Cauchy-Goursat)
Suppose U C Cis open, f: U — C is holomorphic, and T C U is a triangle. Then

/ f(z)dz = 0.
or

It is important is that T C U means the whole solid triangle is in U, not just the boundary.

Remark: It is a “Goursat” theorem not just “Cauchy” because of the proof: We do not
assume that f” is continuous as we have not proved that yet.

Proof: We prove the contrapositive.

Suppose f is continuous and suppose 3 T C U such that

o

We will find a point where f is not complex differentiable.

=c#0.
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After k iterations for the kth triangle T, ‘ / f(z)dz| = 4%
JITk
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k=1

Write f(z) = f(zo) + a(z — z0) + g(z) for some o € C.

Were f complex differentiable at zg, then for some «, % would go to zero as z — z.

We will prove % never goes to zero (no matter what « is).
Fix av. If g(zo) # 0, we are done.

So assume g(zg) = 0. Cauchy’s theorem for polynomials says

/aka(Z) dz = ./9Tk (f(z0) + a(z — z0) + g(2)) dz = /aTk ¢(z) dz.
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The length of T is %, by the mean value theorem for integrals, 3 z; € JT* such that
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zx # 20 as g(zg) = 0.

Let d = diam(T). Then |z — zo| < zd—k and

3(z) 2k|g<zk)| B
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Since z;y — zp, we have that g( does not go to zero as z — zo.

So f is not complex differentlable at zo.
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A useful version of this result is the following exercise:

Exercise: Suppose T C C is a triangle and f: T — C a continuous function whose
restriction to the interior of T is holomorphic. Prove that faT f(z)dz=0.

Hint: Passing some sort of limit under the integral is required.



