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Theorem (Rouché)

Suppose U c C is open, T is a cycle in U homologous to zero in U, and n(T; z) is either 0 or 1 for all
z ¢ T. Suppose that f: U — C and g: U — Cq, are meromorphic functions with no zeros or
poles on I such that

If(z) —¢(@)| < |f)| + |g(z)]  forallz €T.

Let V ={z € U\T :n(I;z) = 1}. Let Ny, Ny be the number of zeros in V and Pf, Pq the number of
poles in V (both counting multiplicity) of f and g respectively. Then

Ny - Pf = N, - P,

Corollary (Rouché)

Let U, T and V be as in the theorem. Suppose f: U — C and g: U — C are holomorphic such that
If(z) — g(2)| < |f(2)| +18(2)| for all z € T. Then f and g have the same number of zeros (counting
multiplicity) in V.
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Let Log be the principal branch of log on C \ (-0, 0].
The function % has an antiderivative Log o@ on a neighborhood of T

By Cauchy’s theorem for derivatives, together with the argument principle:
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= (Nf = Py) = (Ng = Py).
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The classical hypothesis |f(z) — g(z)| < |f(z)| is often sufficient.
Example: Consider P(z) = z" + 1. Let us use Rouché to show that all the zeros are on dD.

On aAl—E(O)/
IP(z) 1] = |z|" < 1=1].

By Rouché P(z) and 1 have the same number of zeros in A_(0).

On dA14¢(0),
|P(z) —z"| =1 < |Z"].

By Rouché, P(z) and z" have the same number of zeros in Aj1¢(0).
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|P(z) - (z* +242%)| = [122° + 4z + 6] < |122°] + |4z| + |6

=22 <23 =|242%| - ||| < |2t + 2427

z* + 2422 has zeros at +V24i (outside D) and two zeros at the origin (inside D). So P(z) also
has two zeros in D.

If |z| = 46 + €, then
|P(z) - 24’ = |1223 +242% + 4z + 6’ < 46lz < |z|4 = |z4| .

So all four zeros satisty |z| < 46 + €, that is, |z| < 46.

(Actually the largest zero of P has modulus less than 10).



