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Riemann mapping theorem: The only simply connected domains in ℂ (up to
biholomorphisms) are ℂ and 𝔻.

More precisely:

Theorem (Riemann mapping theorem)
Let U ⊂ ℂ be a simply connected domain such that U ≠ ℂ. Let p ∈ U be given. Then there exists a
unique biholomorphic (conformal) map f : U → 𝔻 such that f (p) = 0 and f ′(p) > 0.

U = the upper half disk
p = (

√
2 − 1)i

Proof is to “maximize” |f ′(p)| among all maps into the disc and f (p) = 0.
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Proof: Let ℱ be the set of injective holomorphic f : U → 𝔻 such that f (p) = 0.

First we need to prove that ℱ is nonempty:

Let q ∈ ℂ \ U. ∃ g : U → ℂ such that
(
g(z)

)2
= z − q (U simply connected).

g(z) = g(𝜁) ⇒
(
g(z)

)2
=
(
g(𝜁)

)2 ⇒ z = 𝜁 ⇒ g is injective.

g(z) = −g(𝜁) ⇒
(
g(z)

)2
=
(
g(𝜁)

)2 ⇒ z = 𝜁 ⇒ contradiction (g is never zero).
⇒ g(U) ∩

(
−g(U)

)
= ∅ where −g(U) = {z ∈ ℂ : −z ∈ g(U)}.

g(U) is open ⇒ −g(U) is open ⇒ ∃ Δr(𝜉) ⊂ ℂ \ g(U)

⇒ z ↦→ r
g(z) − 𝜉

takes U to 𝔻.

Compose with an automorphism of 𝔻 to make p go to 0 ⇒ ℱ is nonempty.
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Compose with an automorphism of 𝔻 to make p go to 0 ⇒ ℱ is nonempty.
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Suppose f : U → 𝔻 is in ℱ but not onto.

Suppose q ∈ 𝔻 \ f (U).
Let 𝜑q(z) =

z − q
1 − q̄z

. Note 𝜑q ∈ Aut(𝔻), 𝜑q(q) = 0, and 𝜑q ◦ f nonzero.

∃ g : U → ℂ s.t.
(
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)2
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(
f (z)

)
. g(U) ⊂ 𝔻. g(z) = g(𝜁) ⇒ 𝜑q

(
f (z)

)
= 𝜑q

(
f (𝜁)

)
.

𝜑q ◦ f injective ⇒ g injective.

Define h = 𝜑g(p) ◦ g. h(p) = 0 ⇒ h ∈ ℱ . Also g = 𝜑−g(p) ◦ h.

Differentiate 𝜑q ◦ f = g2 at p (recall 𝜑′
a(0) = 1 − |a|2):(

1 − |q|2
)
f ′(p) = 𝜑′

q
(
f (p)

)
f ′(p) = 2g(p)g′(p) = 2g(p)𝜑′

−g(p)
(
h(p)

)
h′(p) = 2g(p)

(
1 − |g(p)|2

)
h′(p).

|f ′(p)| =
2|g(p)|

(
1 − |g(p)|2

)
1 − |q|2 |h′(p)| =

2
√
|q|

1 + |q| |h
′(p)| as

(
g(p)

)2
= −q.

|q| < 1 ⇒
2
√
|q|

1 + |q| < 1 ⇒ |f ′(p)| < |h′(p)|.
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Construct a sequence {fn} in ℱ such that

lim
n→∞

|f ′n(p)| = sup
f∈ℱ

|f ′(p)|

Montel says (ℱ is uniformly bounded), there exists a convergent subsequence,
WLOG {fn} converges to f .

By the corollary to Hurwitz, f is injective or constant.

By taking limits: |f ′(p)| > 0 (f not constant), f (p) = 0, |f (z)| ≤ 1 for all z ∈ U.
Open mapping theorem ⇒ |f (z)| < 1 for all z ∈ U.

f must be onto, otherwise there would be an h ∈ ℱ with |f ′(p)| < |h′(p)|.

Uniqueness left as an exercise. □
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Remark: An explicit map is useful, e.g., in differential equations.

The theorem doesn’t answer how a map is constructed.
There is lots of literature on constructing the map.
E.g., if U is a polygon, there is an explicit formula: the Schwarz–Christoffel mapping.

Remark: The theorem doesn’t answer how regular the map is up to the boundary.
The nicer the boundary, the nicer the map will be.
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Exercise: Suppose U ⊂ ℂ is a simply connected domain. Show that for every two points
z,w ∈ U, there exists an automorphism 𝜓 ∈ Aut(U) such that 𝜓(z) = w.

Exercise:
a) Suppose U ⊂ ℂ is a simply connected domain, U ≠ ℂ, p, q ∈ U are distinct points, and
f : U → U is holomorphic such that f (p) = p and f (q) = q. Prove that f is the identity.
b) Find a counterexample if U = ℂ.

Exercise: Show that 𝔻 \ {0} and the annulus ann(0; 1, 2) are not biholomorphic.

Exercise: Suppose f : ℂ → ℂ is entire holomorphic and injective, prove that f is onto.
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f : U → U is holomorphic such that f (p) = p and f (q) = q. Prove that f is the identity.
b) Find a counterexample if U = ℂ.

Exercise: Show that 𝔻 \ {0} and the annulus ann(0; 1, 2) are not biholomorphic.
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