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Consider a “plot” of e1/z.

Values of e1/z are shown using

modulus as brightness,

argument as hue (color).

It seems like near zero,
we achieve every value.

We actually get ℂ \ {0} as
the image of any neighborhood of 0.
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Theorem (Casorati–Weierstrass)
Suppose U ⊂ ℂ is open and f : U \ {p} → ℂ is holomorphic with an essential singularity at p ∈ U.

Then for every punctured disc Δr(p) \ {p} ⊂ U, the image

f
(
Δr(p) \ {p}

)
=
{
w ∈ ℂ : w = f (z), z ∈ Δr(p) \ {p}

}
is dense in ℂ.

Intuitive idea of the proof:
If a whole disc Δs(q) is missing from the image, take q to ∞ by an LFT.

Δs(q) goes to the complement of a bounded closed disc, and Riemann extension applies.

Remark: There is a stronger (and much harder to prove) theorem:

Picard’s theorem says
f
(
Δr(p) \ {p}

)
= ℂ or

f
(
Δr(p) \ {p}

)
= ℂ \ {z0} for some z0.
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Proof (of Casorati–Weierstrass):
Suppose f : U \ {p} → ℂ is holomorphic, Δr(p) ⊂ U, and Δs(q) is such that

Δs(q) ⊂ ℂ \ f
(
Δr(p) \ {p}

)
.

Define g : Δr(p) \ {p} → ℂ by g(z) = 1
f (z) − q

.

|f (z) − q| ≥ s for z ∈ Δr(p) \ {p}

⇒ |g(z)| ≤ 1/s for z ∈ Δr(p) \ {p}

⇒ g has a removable singularity at p by Riemann extension.

So assume g is defined in Δr(p).

f (z) = 1
g(z) + q for z ∈ Δr(p) \ {p}.

If g(p) = 0, ⇒ f has a pole at p.

If g(p) ≠ 0, ⇒ f has a removable singularity at p.

In either case, f does not have an essential singularity at p. □
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Exercise: Prove the converse of Casorati–Weierstrass. Let U ⊂ ℂ be open, p ∈ U, and
f : U \ {p} → ℂ holomorphic. Prove that if f

(
Δr(p) \ {p}

)
is dense in ℂ for all r > 0 such that

Δr(p) ⊂ U, then f has an essential singularity at p.

Exercise: Suppose that g : Δr(p) \ {p} → ℂ has an isolated singularity. Prove f (z) = eg(z) has
either a removable or an essential singularity.

Exercise: Suppose f : ℂ → ℂ is holomorphic and nonconstant. Prove f (ℂ) is dense in ℂ.
Remark: The so-called “little Picard theorem” says that f (ℂ) is actually everything minus
possibly one point, but that is much harder to prove.
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