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The Wirtinger operators % and % make sense for every real differentiable function.
For polynomials the operators work as if z and z were separate variables. E.g. (exercise)
9 [ 2:5 10 3 9 9 [ 2:3. 10 20952
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So a holomorphic function is “one that does not depend on z.”

Caution: Note that % [2%2% + z1°] does not exist, while % [2%2% + 21°] does.
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Remark 3: The chain rule for real differentiable functions can be written as
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