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What is the right topology for the set of holomorphic functions?

Curiously, the right topology is the same as for continuous functions:

Definition
A sequence of functions fn : U → ℂ converges uniformly on compact subsets to f : U → ℂ if
fn |K converges uniformly to f |K for every compact K ⊂ U.

What do we mean by the right topology?
The most natural one that preserves holomorphic functions.

For example, the uniform topology is the right one for continuous functions:
The uniform limit of continuous functions is continuous.

But for real differentiable functions, it’s not:

|x|1+1/n is C1 on ℝ and converges uniformly on compact subsets to |x|.
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Theorem
Suppose U ⊂ ℂ is open and fn : U → ℂ is a sequence of holomorphic functions converging
uniformly on compact subsets to f : U → ℂ.

Then f is holomorphic. Moreover, for all ℓ , the ℓ th

derivative f (ℓ )n converges uniformly on compact subsets to f (ℓ ).

Proof: Fix p ∈ U. Consider Δr(p) ⊂ U.

For any z ∈ Δr(p),

fn(z) =
1

2𝜋i

∫
𝜕Δr(p)

fn(�)
� − z

d�.

𝜕Δr(p) is compact. Let 𝛿 > 0 be the distance of z to 𝜕Δr(p).
For � ∈ 𝜕Δr(p), ���� fn(�)� − z

− f (�)
� − z

���� = |fn(�) − f (�)|
|� − z| ≤ 1

𝛿
|fn(�) − f (�)|.

I.e., � ↦→ fn(�)
�−z converges uniformly to � ↦→ f (�)

�−z on 𝜕Δr(p) (as fn → f uniformly on 𝜕Δr(p)).

We can take the limit n → ∞ underneath the integral.
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We get f (z) = 1
2𝜋i

∫
𝜕Δr(p)

f (�)
� − z

d� for all z ∈ Δr(p).

f |𝜕Δr(p) is continuous by uniform convergence.

f |Δr(p) = C[f |𝜕Δr(p)] (the Cauchy transform), which is holomorphic.

So f is holomorphic.

We still need to prove the “Moreover” bit:
That

{
f (ℓ )n

}
also converges uniformly on compact subsets.
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Suppose K ⊂ U is compact.

If U ≠ ℂ, the distance d of K and 𝜕U is positive (if U = ℂ, take d > 0 arbitrary).

Let K′ =
⋃
z∈K

Δd/2(z).

K ⊂ K′ ⊂ U. UK
K′

d

K′ is bounded.
If p ∉ K′, ∃q ∈ K such that |p − q| is
the distance of K (compact) to p.
|p − q| > d/2 (p ∉ K′).
Every point in Δ|p−q|−d/2(p) is further than d/2 from K (so not in K′). So K′ is closed.
⇒ K′ is compact.

{fn} converges uniformly on K′: Given 𝜖 > 0, ∃N such that |fn(z) − f (z)| < 𝜖 ∀ z ∈ K′, n ≥ N.

For any p ∈ K, by Cauchy estimates on fn − f in Δd/2(p) (note 𝜕Δd/2(p) ⊂ K′):��� f (ℓ )n (p) − f (ℓ )(p)
��� ≤ ℓ ! ∥fn − f ∥𝜕Δd/2(p)

(d/2)ℓ
≤ ℓ !2ℓ

dℓ
𝜖.

⇒
{
f (ℓ )n

}
converges uniformly to f (ℓ ) on K. □
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Point is: We can write all derivatives of f as integrals of f .

Integration is a far nicer operation than differentiation, and for holomorphic functions,
we can differentiate by integrating.
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