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Two holomorphic functions that are close on a cycle have the same number of zeros inside.

For meromorphic functions the difference of zeros and poles is the same.

Example: z2 and (z − 𝜖)(z + 𝜖) are close on 𝜕𝔻.

Example: 1 and z−𝜖
z+𝜖 are close on 𝜕𝔻.
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Theorem (Rouché)
Suppose U ⊂ ℂ is open, Γ is a cycle in U homologous to zero in U, and n(Γ; z) is either 0 or 1 for all
z ∉ Γ.

Suppose that f : U → ℂ∞ and g : U → ℂ∞ are meromorphic functions with no zeros or
poles on Γ such that

|f (z) − g(z)| < |f (z)| + |g(z)| for all z ∈ Γ.

Let V = {z ∈ U \ Γ : n(Γ; z) = 1}. Let Nf , Ng be the number of zeros in V and Pf , Pg the number of
poles in V (both counting multiplicity) of f and g respectively. Then

Nf − Pf = Ng − Pg.

Corollary (Rouché)
Let U, Γ and V be as in the theorem. Suppose f : U → ℂ and g : U → ℂ are holomorphic such that
|f (z) − g(z)| < |f (z)| + |g(z)| for all z ∈ Γ. Then f and g have the same number of zeros (counting
multiplicity) in V.
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Classical statement of the theorem uses the weaker inequality

|f (z) − g(z)| < |f (z)|

It has a nice geometric interpretation:

|f (z)|

|f (z) − g(z)|

f (z)g(z)
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Proof: ���� f (z)g(z) − 1
���� < ���� f (z)g(z)

���� + 1 on Γ.

So 𝜑(z) = f (z)
g(z) is never negative (and it is never zero) on Γ (hence on a neighborhood).

Let Log be the principal branch of log on ℂ \ (−∞, 0].

The function 𝜑′

𝜑 has an antiderivative Log ◦𝜑 on a neighborhood of Γ.

By Cauchy’s theorem for derivatives, together with the argument principle:

0 =
1

2𝜋i

∫
Γ

𝜑′(z)
𝜑(z) dz =

1
2𝜋i

∫
Γ

(
f ′(z)
f (z) − g′(z)

g(z)

)
dz

=
1

2𝜋i

∫
Γ

f ′(z)
f (z) dz − 1

2𝜋i

∫
Γ

g′(z)
g(z) dz = (Nf − Pf ) − (Ng − Pg). □
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The classical hypothesis |f (z) − g(z)| < |f (z)| is often sufficient.

Example: Consider P(z) = zn + 1. Let us use Rouché to show that all the zeros are on 𝜕𝔻.

On 𝜕Δ1−𝜖(0),
|P(z) − 1| = |z|n < 1 = |1|.

By Rouché P(z) and 1 have the same number of zeros in Δ1−𝜖(0).

On 𝜕Δ1+𝜖(0),
|P(z) − zn | = 1 < |zn | .

By Rouché, P(z) and zn have the same number of zeros in Δ1+𝜖(0).
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Example: Consider P(z) = z4 + 12z3 + 24z2 + 4z + 6.

On 𝜕𝔻,��P(z) − (z4 + 24z2)
�� = ��12z3 + 4z + 6

�� ≤ ��12z3�� + |4z| + |6|
= 22 < 23 =

��|24z2 | − |z4 |
�� ≤ |z4 + 24z2 |.

z4 + 24z2 has zeros at ±
√

24i (outside 𝔻) and two zeros at the origin (inside 𝔻). So P(z) also
has two zeros in 𝔻.

If |z| = 46 + 𝜖, then��P(z) − z4�� = ��12z3 + 24z2 + 4z + 6
�� ≤ 46|z|3 < |z|4 =

��z4�� .
So all four zeros satisfy |z| < 46 + 𝜖, that is, |z| ≤ 46.

(Actually the largest zero of P has modulus less than 10).
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