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h(z) is holomorphic by Morera. |
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By an exercise we mentioned previously (using Cauchy’s integral formula for derivatives):
W

W .
ox and a_y are continuous.

If z +— 1(z, t) is holomorphic for all ¢ (and 1 continuous), then

OK, now we are done. O
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Corollary
For a continuous f: dA(p) — C, the Cauchy transform Cf: A.(p) — C is holomorphic.

For a random continuous f, Cf may not tend to f as we approach dA.(p).
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then f|,,(y) is holomorphic.



