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Let U, V c C be open.

If f: U — V is holomorphic and bijective and f~! is holomorphic, then f is called a
biholomorphism, and say U and V are bilolomorphic.
(surprisingly, we will later see that ! is automatically holomorphic).

If U =V, then f is called an automorphism.
(Remark that the word “automorphism” appears in many different contexts.)

Denote the set of automorphism by Aut(U), which is a group under composition (exercise).

Remark: Traditionally, a biholomorphism is called a conformal mapping and biholomorphic
U and V are said to be conformally equivalent.

Example: The Cayley map C(z) = = takes H = {z € C : Imz > 0} to D, and has an inverse.

Z+i

Thatis, C|y: H — D is a biholomorphism.

Example: For any a,b € C, a # 0, the function az + b is an automorphism of C.
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Differentiate f 1 (f(z)) = z to find (f 1)’ (f(2))f"(z) = 1.
So f’(z) # 0 for all z, and if w = f(z), then
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Consider a holomorphic f = u + iv. Its real derivative is (as usual z = x + iy)
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Using the Cauchy-Riemann equations, we compute the Jacobian determinant,
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det Df is nonzero (positive) and Df is invertible & f(z) # 0.

Note that we also found that a holomorphic f preserves orientation (positive det Df).
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So in the theorem, if f is holomorphic, then so is f 1. We proved:

Theorem (Inverse function theorem for holomorphic functions)

Suppose U C C is open, f: U — C is holomorphic, p € U, and f'(p) # 0. Suppose further that f is
continuously differentiable. Then there exist open sets V, W C C such thatp € V c U, f(V) = W,
the restriction f |y is injective (one-to-one), and hence a g: W — 'V exists such that
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Remark: We will prove later a holomorphic f is always continuously differentiable.
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But locally we can invert ¢* and we will obtain (locally) the complex logarithm.

Remark: Locally, there are lots of local biholomorphisms (there are lots of holomorphic
functions whose derivative is nonzero at a point).

However, for a fixed U and V, there are very few biholomorphisms of U and V.

E.g. if f € Aut(D), then f(z) = eiG%, if f € Aut(C), then f(z) = az + b.

And comparatively, D and C have more automorphisms than most.

E.g., a disc minus three generically placed points only has the identity automorphism.

(Although we don’t yet have enough machinery to prove these statements.)



