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So c_1 is the only thing left after integration. It’s the “residue.”
Definition
Let the residue of f at p be

Res(f; p) def c_q.

For small enough s > 0,
1
Res(f;p) = c-1 = —/ (2) dz.
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By Cauchy, we can compute the integral over any cycle via the residues inside. That’s the
Residue theorem.
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(Recall, “homologous to zero in U” means n(I';z) = 0forallz € C\ U.

Proof: Write S = {wy, ..., w;}.
Letrq,...,r; be positive such that

Ay (w1), ..., Ay (wy) are mutually disjoint
and Ay (wj) € U for all j.

Define the cycle r
A=T — n(;w) dA, (w1) — -+ — n(T;we) A, (wy).
In the picture n(T;w;) =1, n(T;wz) = 0, and n(T; w3) = 2
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Recognize the formula for c_; at wy:

1
— f(z)dz = Res(f; wg).
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