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Proposition

Let U c C be a simply connected domain and f: U — R a harmonic function. Then there exists a
holomorphic ¢ : U — C such that f = Re ¢.

Similarly f is the imaginary part of some holomorphic function.
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Proposition
Let U c Cbeopenandf: U — R a function.

(i) The function f is harmonic if and only if for every p € U there exists an open neighborhood V
of p and a holomorphic ¢: V — C such thatf = Reqp on V.

(ii) The function f is harmonic if and only if for every p € U, there exists a power series expansion
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converging uniformly absolutely on every closed disc A,(p) C U.




A quick corollary:

Proposition
IfU c Cisopenand f: U — R is harmonic, then f is infinitely (real) differentiable.

Proof: Holomorphic functions are infinitely differentiable.
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Definition
Let U c Cbe open and f: U — R harmonic. If g: U — R is harmonic and f + ig is
holomorphic, then g is called the harmonic conjugate of f.

Every harmonic f on a simply connected domain has a harmonic conjugate.
On C\ {0}, z > log|z| is harmonic, but fails to have a harmonic conjugate.

If it did have a harmonic conjugate then log would have a branch in C \ {0}.

Which follows from:

Proposition

IfU c Cisadomain f: U — R is harmonic and g1 and g» are two harmonic conjugates of f, then
g1 =g + C for some C € R.

(f+ig1) - (f+ig2)

1

Proof: = g1 — g2 is holomorphic, real-valued = constant.
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The real and imaginary parts of a holomorphic function are harmonic.
The modulus [f(z)| is not.

But log|f(z)| is harmonic (where f is nonzero).

Proposition

Suppose U c C is open, f: U — C is holomorphic and never zero. Then
z — loglf(z)|

is harmonic.

Proof: Exercise.
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Exercise: Suppose U C C is a simply connected domain and f: U — R harmonic. Prove
there exists a holomorphic ¢: U — C such that f(z) = log|e(z)|.

Exercise: Let U, V C C be open sets and f: U — V be holomorphic. Prove:
a) If g: V — R is harmonic, then g o f is harmonic.
b) If f is a biholomorphism, then g: V' — R is harmonic if and only if g o f is harmonic.

Exercise: Prove the Liouville theorem for harmonic functions: If f: C — R is harmonic
and nonnegative, then f is constant.

“bounded” for holomorphic functions <> “nonnegative” for harmonic functions:
If f is bounded and holomorphic,

then log|f(z) + M| or Ref(z) + M is nonnegative for large enough M.

Conversely, if log|f(z)| > 0, then is bounded,

f(z (
;Z; :L T is bounded.

and if Ref(z) > 0, then
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Remark: Writing > + a—yz =4 3502

It is like the D’Alembert solution of the one-dimensional wave equation.

so that we can integrate twice may sound familiar.

The wave operator is (using (x, t) for tradition’s sake):
&2
o axz - [at ] [ ]

Write u = x + t and 1 = x — t (characteristic coordinates), then

»? P 9?

o2 o2 ondu
A solution f to the wave equation is
fO 1) = Au) +B(n) = Ax + ) + B(x — 1).

Two waves travelling in opposite directions.



