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Let U C Cbe open. A set ¥ of holomorphic functions f: U — C is called a normal family if

every sequence in ¥ has a subsequence that converges uniformly on compact subsets (the
limit need not be in F).

A set ¥ of functions on U is locally bounded if for every p € U, there is a disc A.(p) € U and
M > 0 such that ||f|[s,p) < Mforallf € ¥ (ie., |f(z)] < Mforallz € Ai(p) and all f € F).
<

In more modern language:

¥ normal family

¥ precompact in the space of holomorphic functions on U with the topology of uniform
convergence on compact subsets.

Exercise: Prove that “locally bounded” means “bounded on compact subsets.”
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E.g., we will prove the Riemann mapping theorem: A biholomorphism of a simply
connected U to D is a map that maximizes the derivative at a point.

Montel gives us a way of finding a maximizer.

Another commonly used consequence of Montel is Vitali’s theorem.

Theorem (Vitali)

Suppose U C C is a domain, {f,} is a locally bounded sequence of holomorphic functions that
converges pointwise on a set E C U, and E has a limit point in U. Then {f,} converges uniformly
on compact subsets in U.

Proof is an exercise.
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Exercise: Let U C C be open and ¥ a normal family of holomorphic functions on U. Show
that {f’ : f € ¥} is a normal family. Note: The converse is false without an extra
hypothesis.

Exercise: Let U C C be a domain, p € U, and suppose 3 a nonconstant bounded
holomorphic function on U.

a) Prove 3 a holomorphic F: U — D such that F'(p) # 0, and |f'(p)| < |F'(p)| for all
holomorphicf: U — D.

b) Show F(p) = 0.

Exercise: Show that if the partial sums of a power series centered at p are uniformly
bounded on A,(p) for some r > 0, then the power series converges in A,(p).



